
Mastering phpMyAdmin 2.8
for Effective MySQL Management

Increase your MySQL productivity and control by
discovering the real power of phpMyAdmin 2.8

Marc Delisle

 BIRMINGHAM - MUMBAI

Mastering phpMyAdmin 2.8 for Effective MySQL
Management
Copyright © 2006 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the author, Packt Publishing,
nor its dealers or distributors will be held liable for any damages caused or alleged to
be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First edition: April 2004

Second edition: October 2004

Third edition: October 2006

Production Reference: 2290906

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 1-847191-60-6

www.packtpub.com

Cover Image by www.visionwt.com

Credits

Author

Marc Delisle

Reviewers

Garvin Hicking

Alexander Turek

Development Editor

Louay Fatoohi

Technical Editor

Saurabh Singh

Editorial Manager

Dipali Chittar

Indexer

Mithil Kulkarni

Proofreaders

Martin Brooks

Chris Smith

Layouts and Illustrations

Shantanu Zagade

Cover Designer

Shantanu Zagade

About the Author

Marc Delisle started to contribute to phpMyAdmin in December 1998, when he
made the first multi-language version. He has been actively involved since May 2001
as a developer and project administrator. phpMyAdmin is now a part of his life.

He has worked since 1980 at Collège de Sherbrooke, Québec, Canada, as an
application programmer and network manager. He has also been teaching
networking, security, Linux servers, and PHP/MySQL application development. In
one of his classes, he was pleased to meet a phpMyAdmin user from Argentina.

I am truly grateful to Louay Fatoohi, my editor, who approached me
for this book project, and accompanied me during the production;
his sound comments were greatly appreciated. My thanks also go to
Garvin Hicking, a member of the phpMyAdmin's development team
and the reviewer for this book. Garvin's sharp eye helped in making
this book clearer and more complete.
Finally, there would be no book about phpMyAdmin without
phpMyAdmin (the software). I wish to thank all contributors to the
source code and documentation; the time they gave to the software
project still inspires me and continues to push me forward.

To Carole, André, Corinne, Annie, and Guillaume, with all my love.

About the Reviewers

Garvin Hicking is a German web developer working for Faktor E GmbH. He
creates web applications using PHP and MySQL, and in his free time enjoys working
on open-source projects like phpMyAdmin or Serendipity. When he's away from
the computer, he likes going to the movies with his girlfriend and friends, blogging,
and taking pictures. What he enjoys most about his work in Open Source is making
people's everyday life easier, by giving them free, but powerful, tools to play with.
Receiving feedback from satisfied users is one of the fundamental give and get
principles he likes to live by.

Alexander Marcus Turek was born on June 2nd, 1984 in Düsseldorf, the capital
of the German province Northrhine-Westphalia. Currently, he's studying Information
Engineering and Management at the University of Karlsruhe, but his origin is Mülheim
an der Ruhr, the home of his family. He first got in touch with the Web in 1998, when
he won a 28.8k modem at the CeBit Home in Hannover, Germany. A few months
later, he learned HTML and started his first Web project, a German game patch
archive called Rabus' Update Site, which he renamed to bugfixes.info, when the
.info domains became available. In the meantime, he switched from static HTML to
PHP in order to be able to manage the growing archive more efficiently. He kept on
learning PHP when trying to extend the portal.

Because the flatfile-based database system became too slow when searching the
still growing archive, he also switched to MySQL in 2001. This is when he got in
touch with phpMyAdmin and the project. He started with revising its language
files because they were a bit outdated and inconsistent. He had fun doing so, and
continued with grabbing some bug reports and submitting patches for them. Loïc
Chapeaux, one of the two co-maintainers at that time, added him to the developers
list and gave him a CVS account in March 2002, so he could merge his patches by
himself. Since then, he has mainly worked on the compatibility with MySQL 4.0,
reworked the server administration area, developed a simple abstraction layer in
order to support MySQLi, and continued with compatibility fixing—this time for
MySQL 4.1 and 5.0. Unfortunately, his studies and phpMyAdmin became too time
consuming, and he had to stop working on bugfixes.info in 2003.

Table of Contents
Preface 1
Chapter 1: Introducing phpMyAdmin 7

PHP and MySQL: The Leading Open-Source Duo 8
What is phpMyAdmin? 8
History 9
Awards 12
phpMyAdmin Features Summary 13
Summary 14

Chapter 2: Installing phpMyAdmin 15
System Requirements 15
Downloading the Files 16
Installation 16

Installation on a Remote Server Using a Windows Client 16
Installation on a Local Linux Server 17
Installation on Local Windows Servers (Apache, IIS) 18

First Connection Configuration 18
Configuration Principles 18
Web-Based Setup Script 19
Manual Creation of config.inc.php 24
Tips for Editing config.inc.php on a Windows Client 24
The config.inc.php File 24
PmaAbsoluteUri 25
Server-Specific Sections 25

extension 26
PersistentConnections 26
connect_type, socket and port 26
compress Configuration 27
Authentication Type: config 27

Testing the First Connection 28

Table of Contents

[ii]

Multi-Server Configuration 28
Servers Defined in the Configuration File 29
Arbitrary Server 29

Advanced Authentication 30
Authentication Types Offered 30
The Control User 31
HTTP Authentication 31
Cookie Authentication 32

Security 34
Directory-Level Protection 34
IP-Based Access Control 34

Rules 35
Order of Interpretation for Rules 36
Simplified Rule for Root Access 36

Restricting the List of Databases 37
Protecting In-Transit Data 37

Upgrading phpMyAdmin 38
Summary 38

Chapter 3: Interface Overview 39
Panels and Windows 39

Login Panels 39
Left and Right Panels 39

Home Page 40
Views 40

Query Window 40
Starting Page 40
Window Titles Configuration 41
General Icon Configuration 41
Natural Sort Order for Database and Table Names 41

Language Selection 42
Themes 43

Theme Configuration 43
Theme Selection 44

Left Panel 44
Database and Table List 45

Light Mode 46
Full Mode 48
Table Short Statistics 48
Quick-Browsing a Table 49
Nested Display of Tables within a Database 49

Server-List Choice 50

Table of Contents

[iii]

Right Panel 51
Home Page 52
Database View 53
Table View 54
Server View 55
Icons for Home Page and Menu Tabs 56

Query Window 56
Site-Specific Header and Footer 57
MySQL Documentation Links 58
Summary 58

Chapter 4: First Steps 59
Database Creation 59

No Privileges? 59
First Database Creation Is Authorized 60

Creating Our First Table 61
Choosing the Fields 62
Table Creation 62
Choosing Keys 64

Manual Data Insertion 66
Data Entry Panel Tuning for CHAR and VARCHAR 68

Browse Mode 69
SQL Query Links 70
Navigation Bar 71
Sorting Results 74
Color-Marking Rows 75
Limiting the Length of Each Column 75
Browsing Distinct Values 76
Browse-Mode Customization 77

Creating an Additional Table 77
Summary 78

Chapter 5: Changing Data 79
Edit Mode 79

Moving to Next Field with the Tab Key 80
Moving with Arrows 80
Handling NULL Values 81
Applying a Function to a Value 81
Duplicating Rows of Data 82

Multi-Row Editing 83
Editing the Next Row 84

Table of Contents

[iv]

Deleting Data 85
Deleting a Single Row 85
Deleting Many Rows 86
Deleting All the Rows in a Table 86
Deleting All Rows in Many Tables 87

Deleting Tables 87
Deleting Databases 88
Summary 88

Chapter 6: Changing Table Structures 89
Adding a Field 89

Vertical Mode 90
Editing Field Attributes 91
TEXT 91
BLOB (Binary Large Object) Fields 92

Binary Contents Uploads 93
ENUM and SET 94
DATE, DATETIME, and TIMESTAMP 96

Calendar Popup 96
TIMESTAMP Options 97

Index Management 98
Single-Field Indexes 98
Multi-Field Indexes and Index Editing 99
FULLTEXT Indexes 100
Table Optimization: Explaining a Query 101
Detection of Index Problems 103

Summary 103
Chapter 7: Exporting Structure and Data 105

Dumps, Backups, and Exports 105
Database Exports 106

The Export Sub-Panel 107
SQL 107

SQL Options 109
The Save as file Sub-Panel 113

File Name Template 114
Compression 114
Choice of Character Set 115

CSV 116
CSV for MS Excel 117
PDF 117
Microsoft Excel 2000 118
Microsoft Word 2000 119

Table of Contents

[v]

LaTeX 120
XML 122
Native MS Excel (pre-Excel 2000) 123

Table Exports 124
Split-File Exports 125

Selective Exports 125
Exporting Partial Query Results 125
Exporting and Checkboxes 127

Multi-Database Exports 127
Saving the Export File on the Server 128

User-specific Save Directories 129
Memory Limits 130
Summary 130

Chapter 8: Importing Structure and Data 131
Limits for the Transfer 131

Time Limits 132
Other Limits 132
Partial Imports 133

Importing SQL Files 133
Importing CSV Files 135

Differences between SQL and CSV Formats 135
Exporting a Test File 135
CSV 136
CSV Using LOAD DATA 137

Requirements 138
Using the LOAD DATA Interface 138

Web Server Upload Directories 139
Summary 140

Chapter 9: Searching Data 141
Single-Table Searches 141

Daily Usage of phpMyAdmin 141
Entering the Search Sub-Page 141
Selection of Display Fields 142
Search Criteria by Field: Query by Example 143
Print View 144
Wildcard Searching 144
Combining Criteria 146
Applying a WHERE Clause 147
Obtaining Distinct Results 147

Table of Contents

[vi]

Complete Database Search 148
Summary 149

Chapter 10: Table and Database Operations 151
Table Maintenance 152
Changing Table Attributes 152

Table Type 153
Table Comments 153
Table Order 154
Table Options 155

Renaming, Moving, and Copying Tables 156
Appending Data to a Table 157

Multi-Table Operations 157
Repairing an "in use" Table 157

Database Operations 158
Renaming a Database 159
Copying a Database 159

Summary 159
Chapter 11: The Relational System 161

Relational MySQL? 161
InnoDB 162

Linked-Tables Infrastructure 162
Location of the Infrastructure 162
Installing Linked-Tables Infrastructure 163

Multi-User Installation 164
Single-User Installation 166

The Relation View 167
Internal phpMyAdmin Relations 168

Defining the Relation 168
Defining the Display Field 169

InnoDB Relations 170
InnoDB Tables without Linked-Tables Infrastructure 173

Benefits of the Defined Relations 174
Foreign Key Information 174
The Drop-Down List of Foreign Keys 175
The Browseable Foreign-Table Window 176
Referential Integrity Checks 177
Automatic Updates of Metadata 178

Column-Commenting 178
Automatic Migration 180

Summary 180

Table of Contents

[vii]

Chapter 12: Entering SQL Commands 181
The SQL Query Box 181

The Database View 181
The Table View 182

The Fields Selector 183
Clicking Into the Query Box 183

The Query Window 183
Query Window Options 184
JavaScript-Based SQL History 185
Database-Based SQL History (Permanent) 185
Editing Queries in the Query Window 186

Multi-Statement Queries 186
Pretty Printing (Syntax-Highlighting) 188
Views 190

Creating a View 190
Operations on Views 191

The SQL Validator 192
System Requirements 192
Making the Validator Available 192
Validator Results 193

Standard-Conforming Queries 193
Non Standard-Conforming Queries 194

Summary 195
Chapter 13: The Multi-Table Query Generator 197

Choosing Tables 198
Column Criteria 199

Field Selector: Single-Column or All Columns 199
Sorts 199
Showing a Column 200
Updating the Query 200
Criteria 201

Adjusting the Number of Criteria Rows 204
Adjusting the Number of Criteria Columns 206

Automatic Joins 207
Executing the Query 207
Summary 208

Chapter 14: Bookmarks 209
Creating a Bookmark after a Successful Query 209
Storing a Bookmark before Sending a Query 211
Multi-Query Bookmarks 213

Table of Contents

[viii]

Recalling from the Bookmarks List 213
Bookmark Execution 213
Bookmark Manipulation 214

Public Bookmarks 214
The Default Initial Query for a Table 215
Bookmark Parameters 216

Creating a Parameterized Bookmark 216
Passing a Parameter Value to a Bookmark 217

Executing Bookmarks from the pma_bookmark Table 218
Summary 218

Chapter 15: System Documentation 219
The Database Print View 219
The Selective Database Print View 220
The Table Print View 221
The Data Dictionary 222
Relational Schema in PDF 223

Adding a Third Table to Our Model 223
Editing PDF Pages 225

Page Planning 225
Creating a New Page 225
Editing a Page 225
Displaying a Page 227
A Note about Fonts Used 229

Summary 229
Chapter 16: MIME-Based Transformations 231

The MIME Column's Settings 232
MIME Types 232
Browser Transformations 232
Transformation Options 233

Requirements for Image Generation 233
The GD2 Library 233
The JPEG and PNG Libraries 234
Memory Limits 234

Examples of Transformations 235
Clickable Thumbnail (.jpeg or .png) 235
Links to an Image 236
Date Formatting 236
Links from Text 237

text/plain: link 237
text/plain: imagelink 238

Table of Contents

[ix]

Preserving the Original Formatting 238
Displaying Parts of a Text 239
Download Link 239
Hexadecimal Representation 240
SQL Pretty Printing 240
External Applications 240

External Application Example: In-Cell Sort 241
Summary 242

Chapter 17: Character Sets and Collations 243
Language Files and UTF-8 243
Versions of MySQL Prior to 4.1.x 244

Data Recoding 244
Character Sets 245
Choosing the Effective Character Set 246
The Impact of Switching 246
Importing and Exporting with Character Sets 247

MySQL 4.1.x and Later 248
Collations 249
The Home Page 249

Creating a Database 250
Available Character Sets and Collations 250
Effective Character Sets and Collations 251

The Database View 252
The Table View 252
Importing and Exporting with Character Sets 253
Server View 254

Kanji Support 254
Summary 254

Chapter 18: MySQL Server Administration with phpMyAdmin 255
Entering the Server View 255

User and Privileges Management 256
The User Overview 256
Adding a User 257

User Name 258
Host 258
Password 258
Global Privileges 258
Resource Limits 258

Editing a User 259
Edit Privileges 259
Database-Specific Privileges 259

Table of Contents

[x]

Changing the Password 262
Changing Login Information or Copying a User 262

Removing a User 263
Database Information 264

Enabling Statistics 265
Sorting Statistics 265
Checking the Database Privileges Check 265
Dropping Selected Databases 266

Server Operations 266
Server Status Verification 266

The General Status Page 266
InnoDB Status 267

Server Variables 268
Server Processes 269
Storage Engines 270
The Binary Log 271

Summary 272
Chapter 19: Troubleshooting and Support 273

System Requirements 273
Base Configuration 274
Solving Common Errors 274

Error Messages 274
Cannot Load MySQL Extension 274
MySQL Said: Can't Connect to Local MySQL Server 275
Socket Problem (Linux/UNIX) 275
Named Pipe Problem (Windows) 275
Error # 2003: The Server is not Responding 275
MySQL Said: Access Denied 275
When Using http Authentication 276
When Using http, cookie, or config Authentication 276
Access Denied ... "using password: NO" 276
Access Denied ... "using password: YES" 276
Warning: Cannot Add Header Information 276
MySQL Said: Error 127, Table Must Be Repaired 276
BLOB Column Used in Key Specification without a Key Length 276
IIS: No Input File Specified 277
A "404: page not found" Error when Modifying a Row 277

Other Problems 277
Blank Page or Weird Characters 277
Not Being Able to Create a Database 277
Problems Importing Large Files or Uploading Large BLOB Files 278
MySQL Root Password Lost 278
Duplicate Field Names when Creating a Table 278
Authentication Window Displayed more than Once 279
Column Size Changed by phpMyAdmin 279

Table of Contents

[xi]

Seeing many Databases that Are Not Ours 279
Not Being Able to Store a Value Greater than 127 279

Seeking Support 279
FAQs 280
Help Forums 280

Creating a SourceForge Account 280
Choosing the Thread Title 280
Reading the Answers 280

Support Tracker 280
Bug Tracker 281

Environment Description 281
Bug Description 281

Contributing to the Project 281
The Code Base 281
Translation Updates 282
Patches 282

Future phpMyAdmin Versions 282
Summary 282

Index 283

Preface
Used by millions of developers, MySQL is the most popular Open Source database,
supporting numerous large dynamic websites and applications. MySQL has acquired
this wide popularity by virtue of its open source nature, reliability, robustness, and
support for various platforms.

This popularity has also been aided by the existence of phpMyAdmin, the
industry-standard administration tool that makes database management easy for
both the experienced developer and novice. The powerful graphical interface that it
provides to MySQL has made phpMyAdmin an indispensable tool for MySQL and
Web developers.

This book is a comprehensive tutorial to phpMyAdmin, demonstrating the full
potential of this tool. It shows how to configure, activate, and use phpMyAdmin’s
myriad features, both basic and advanced.

What This Book Covers
This is a quick review of the nineteen chapters of the book.

Chapter 1 is an introduction to phpMyAdmin, its history, and main features.

Chapter 2 provides detailed coverage of the different installation and configuration
options, including installing one copy of phpMyAdmin for multiple users, and
configuring it to manage many servers. Security issues are also discussed in
this chapter.

Chapter 3 is an overview of the graphical interface of phpMyAdmin. A more detailed
examination of the various panels and windows is provided in the following chapters.

In Chapter 4 we see how to create our first database and table and its various fields.

Preface

[2]

In Chapter 5 we cover deleting single and multiple rows, tables, and databases.
This chapter also covers data-editing operations, such as handling Null values and
applying MySQL functions to data.

Chapter 6 focuses on the various options of phpMyAdmin for changing table
structure. These include adding field types such as TEXT, BLOB, ENUM, and SET,
uploading binary data into BLOB fields, and managing indexes. phpMyAdmin can
be used to backup data and take intermediary snapshots during development and
production phases.

Chapter 7 shows how to perform these tasks using the export feature of
phpMyAdmin. The various data formats that can be exported are also explained.

The focus of Chapter 8 is that phpMyAdmin can also import data. Importing SQL
and CSV files, and phpMyAdmin’s handing of compressed files are covered here.
In addition to its user friendly browsing features, phpMyAdmin allows us to easily
search through our data.

Chapter 9 covers searching databases and single tables. The previous chapters dealt
mostly with table fields.

Chapter 10 focuses on operations that affect tables or databases as a whole. Repairing
and optimizing tables, changing the various table attributes, and copying and
moving tables to another database are all explained here, as well as database renaming
or copying.

In Chapter 11, we start reading about phpMyAdmin’s more advanced features. We
see how to install the linked-tables infrastructure, which is required for using various
advanced features. Both single- and multi-user installations are covered. Defining
inter-table relations is also explained.

In addition to letting us perform various database operations through its graphical
interface, phpMyAdmin also allows us to run complex SQL commands for tasks
that cannot be performed through the graphical interface. This feature is covered
in Chapter 12.

Chapter 13, which covers multi-table search, complements Chapter 9 and shows how
to search single tables and a whole database.

Chapter 14 covers phpMyAdmin’s powerful feature of query bookmarks, which is
one of the linked-tables features that were covered in Chapter 11. The chapter shows
how to record, manipulate, and pass parameters to bookmarks.

Creating and maintaining good documentation about data structure is crucial,
particularly for team projects. phpMyAdmin allows us to do this, and this feature is
covered in Chapter 15. The chapter shows how to generate simple table and column

Preface

[3]

lists, use data dictionaries for complete column lists, and generate custom-made
relational schema for tables in the PDF format.

phpMyAdmin can perform MIME-based transformation on column contents.
Transformation of both text and images is covered in Chapter 16.

Chapter 17 covers character sets and collations in detail.

Chapter 18 shows how system administrators can use phpMyAdmin for user account
and privileges management and server status verification. The chapter also covers
how non-administrators can obtain information about the server.

Chapter 19, the last chapter of the book, covers various troubleshooting and support
issues. It covers the most common error messages and configuration problems. The
chapter also includes information on how and where you can get technical support.

What You Need for This Book
 You need to have access to a server or workstation that has the following installed:

MySQL
PHP
Apache or IIS Web server

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

There are three styles for code. Code words in text are shown as follows:
"The $cfg['PropertiesIconic'] parameter can have the values TRUE, FALSE,
or 'both'".

A block of code will be set as follows:

$cfg['PropertiesIconic'] = TRUE;
$cfg['ModifyDeleteAtLeft'] = TRUE;
$cfg['ModifyDeleteAtRight'] = FALSE;

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items will be made bold:

 CREATE TABLE books (
 isbn varchar(25) NOT NULL default '',

•

•

•

Preface

[4]

 author_id int(11) NOT NULL default '0',
 PRIMARY KEY (isbn),
 KEY author_id (author_id)
) TYPE=MyISAM COMMENT='Contains book description';

Any command-line input and output is written as follows:

 c:\packt>mysqladmin ping
mysqld is alive

New terms and important words are introduced in a bold-type font. Words that you
see on the screen, in menus or dialog boxes for example, appear in our text like this:
"clicking the Next button moves you to the next screen".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader Feedback
Feedback from our readers is always welcome. Let us know what you think about
this book, what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply drop an email to feedback@packtpub.com,
making sure to mention the book title in the subject of your message.

If there is a book that you need and would like to see us publish, please send
us a note in the SUGGEST A TITLE form on www.packtpub.com or
email suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer Support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Preface

[5]

Downloading the Example Code for the Book
Visit http://www.packtpub.com/support, and select this book from the list of titles
to download any example code or extra resources for this book. The files available
for download will then be displayed.

The downloadable files contain instructions on how to use them.

Errata
Although we have taken every care to ensure the accuracy of our contents, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in text or
code—we would be grateful if you would report this to us. By doing this you can
save other readers from frustration, and help to improve subsequent versions of this
book. If you find any errata, report them by visiting http://www.packtpub.com/
support, selecting your book, clicking on the Submit Errata link, and entering the
details of your errata. Once your errata have been verified, your submission will be
accepted and the errata added to the list of existing errata. The existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
some aspect of the book, and we will do our best to address it.

Introducing phpMyAdmin
Welcome to the evolved Web! In the last few years, the Web has changed
dramatically. In its infancy, the Web was a medium used mainly to convey static
information ("Look, my home page is on the Web!"). Now, large parts of the Web
carry information that is dynamically generated by application programs, on which
enterprises and even individuals rely for their intranets and public websites.

Because of the clear benefits of databases (better accessibility and structuring of
information), web applications are mostly database driven. The front-end used is the
well known (and quickly deployed) web browser, and there is a database system at
the back-end. Application programs provide the interface between the browser and
the database.

Those who are not operating a database-driven website today are not using the
medium to its fullest capability. Also, they could be lagging behind competitors
who have made the switch. So it is not a question of whether we should implement a
database-driven site, but it is more about when and mostly how to implement it.

Why web applications? They improve user experience and involve them in the
process by opening up possibilities such as:

Gathering feedback about the site
Letting users communicate with us and with each other through forums
Ordering goods from our e-commerce site
Enabling easily editable web-based information (content management)
Designing and maintaining databases from the Web

Nowadays, WWW might stand for World-Wide Wave, a big wave that profoundly
modifies the way developers think about user interface, data presentation, and most
of all, the way data reaches users and comes back to the data center.

•

•

•

•

•

Introducing phpMyAdmin

[8]

PHP and MySQL: The Leading
Open-Source Duo
This chapter describes the place of phpMyAdmin in the context of PHP/MySQL,
explains phpMyAdmin's history, and summarizes its features. Let us look at
the solutions currently offered by host providers. The most prevalent is the
PHP/MySQL combination.

Well supported by their respective home sites, http://www.php.net and
http://www.mysql.com, this duo has enabled developers to offer a lot of
ready-made open-source web applications, and most importantly, enabled in-house
developers to quickly put in place solid web solutions.

MySQL, which is mostly compliant with the ANSI-92 SQL standard, is a database
system well known for its speed, robustness, and small connection overhead, which
is important in a web context where pages must be served as quickly as possible.

PHP, installed as a module inside the web server, is a popular scripting language in
which applications are written to communicate with MySQL on the back-end, and
browsers on the front-end. Ironically, the acronym's signification has evolved itself
along with the Web evolution, from Personal Home Page to Professional Home
Page to its current recursive definition: PHP: Hypertext Processor. Available on
millions of Web domains, it drives its own wave of quickly developed applications.

What is phpMyAdmin?
phpMyAdmin is a web application written in PHP and contains–like most web
applications–XHTML, CSS, and JavaScript client code. It provides a complete web
interface to administering MySQL databases and is widely recognized as the leading
application in this field.

Being open source since the start of its existence, it has enjoyed support from
numerous developers and translators world wide (being translated into 50 languages
at the time of going to press). The project is currently hosted on SourceForge.

Host providers everywhere have shown their trust in phpMyAdmin (official home
page at http://www.phpmyadmin.net) by installing it on their servers. In addition,
we can install our own copy of phpMyAdmin inside our web space, as long as
our provider has installed the minimum PHP version required by phpMyAdmin,
which is currently PHP 4.1.0 with session support. Moreover, the web server must
have access to a MySQL server (version 3.23.32 or later)–either locally or on a
remote machine. The popular Cpanel (a website control application) interfaces with
phpMyAdmin.

Chapter 1

[9]

History
The first internal version (0.9.0) was coded by Tobias Ratschiller and bears the
date 1998-09-09. He then released version 1.0.1 on 1998-10-26. The early versions
were offered on Tobias's site: http://www.phpwizard.net (This site is no longer
associated with him.) Tobias wrote in the accompanying notes:

"This work is based on Peter Kuppelwieser's MySQL-
Webadmin. It was his idea to create a web-based interface
to MySQL using PHP3. Although I have not used any of
his source-code, there are some concepts I've borrowed
from him. phpMyAdmin was created because Peter told
me he wasn't going to further develop his (great) tool."

Compared to today's version (eight years after the original), the first version was
somewhat limited in features but could nonetheless be used to create databases and

Introducing phpMyAdmin

[10]

tables, edit their structure, and enter and retrieve data. Notice in the figure that
follows that the left frame was already there to list database names (not table names
yet), and the right frame was the workspace to manage a database or table. This is
what the interface for databases looked like in version 1.3.0:

To work on a table, you had the following screen:

I started using phpMyAdmin at version 1.2.0 (released 1998-11-29) and was
immediately hooked on the idea of being able to use a web application to maintain
a remote database. However, students at Collège de Sherbrooke where I work in
Québec, Canada, are French-speaking folks, so I contacted Tobias and offered to
transform his source code by outsourcing all messages in a message file. He accepted
the offer and I created the English and the French message files. Then, on 1998-12-27,
Tobias released version 1.3.1, the first multi-language version. (Meanwhile, he had
managed to create the German message file.)

Chapter 1

[11]

In 1999 and the first half of 2000, Tobias improved the navigation system, added
features, and merged more language files. His project site maintained a discussion
forum, so new ideas came along and patches were discussed. Version 2.1.0 was
released on 2000-08-06, which was the last version released by Tobias, who had no
more time to devote to this project.

However, users were already numerous and asked more of the product. Patches
were floating on the Internet, with no way of coordinating them. A security
alert (and fix) had been published, but no new version was being released. On
2001-03-31, Olivier Müller registered the phpMyAdmin project on SourceForge.
net, and released a 2.2.0pre1 version. At this time, this was called the unofficial
version. This restart of the project attracted some developers, who now had the
SourceForge infrastructure (CVS server, forums, bug trackers, mailing lists) to help
speed up the development. I personally "re-joined" the project in May 2001 and
started fixing and improving the code, as my co-developers were doing.

We became "official" on 2001-05-28, as Tobias accepted our new version as the new
official one. I remember those months of very intense development effort, with daily
improvements and bug fixes, along with new documentation sections. This effort
culminated on 2001-08-31 with the release of version 2.2.0.

Here's an excerpt from the announcement file for 2.2.0:

"After 5 months, 5 beta releases, and 4 release candidate
versions, the phpMyAdmin developers are pleased to
announce the availability of phpMyAdmin 2.2.0. [...] on
31st March 2001, Olivier Müller (Switzerland), supported
by Marc Delisle (Québec), Loïc Chapeaux (France) and a
team of 8 other developers re-started the phpmyadmin
project on SourceForge.net, with the authorization of
the original package maintainer. Now, after 5 months of
patches, bug fixes, new features and testing, the version
2.2.0 is finally ready."

This version had security fixes, seven new languages (with dynamic
language-detection), and the code had been reworked to be CSS2 and XHTML 1.0
compliant, and follow the PEAR coding guidelines. The bookmarks feature appeared
in this version.

During the following year the development continued, with the release of seven
minor versions. The last version of the 2.2.x series is 2.2.7-pl1, which is also the last
to have been fully tested under PHP 3. A date to note: 2002-04-03; we registered
phpmyadmin.net as the official domain name for the project.

Introducing phpMyAdmin

[12]

On 2002-08-11, version 2.3.0 was released. There had been so many new features that
the pages were getting vertically too big, so this version was the "great split version",
displaying sub-pages for each table and database group of features.

The team started a new schedule of releasing a new minor version (2.3.1, 2.3.2 ...)
every two months. On 2003-02-23, version 2.4.0 included a new server/user
management facility. Then on 2003-05-11, version number jumped to 2.5.0 to mark
the new MIME-type cell transformation system.

Version 2.6.0 – released on 2004-09-27 – added support for the new mysqli extension
available in PHP 5 for better performance and improved security. The interface for
this version has been redesigned, including new icons and a theme manager. All
these features are explained in this book. On 2005-04-16, version 2.6.2 was born,
adding basic support for MySQL's VIEWs.

In June 2005, the first meeting of phpMyAdmin's development team took place
in Karlsruhe, Germany during LinuxTag 2005. Six members of the team from
Switzerland, Germany, Czech Republic, and Canada were present, displaying
phpMyAdmin and discussing its features with the event's attendees. We also
celebrated PHP's and MySQL's tenth anniversary on the same occasion.

On 2005-12-04, version 2.7.0 was released. With this version, we ended support for
older configuration files – those before phpMyAdmin 2.3.0. Also, in 2.7.0 a new
plug-in-based import module made its debut.

Version 2.8.0 was made available on 2006-03-06. It included a new web-based
setup mechanism. With 2.8.0 the team started a new numbering scheme for version
releases. The 2.8 family contains only fixes for the features already present in 2.8.0.
Thus, after 2.8.0, here are some examples of the versions that can be released:

2.8.0.1, for anything urgent like a security fix
2.8.1, containing normal fixes for the 2.8 family
2.9.0, with new features

In 2006, phpMyAdmin continues to be popular; the cumulative downloads since
April 2001 have reached an impressive count of more than 10300 000 in June 2006 at
the time of press.

Awards
phpMyAdmin has also won some awards, as can be seen in the Awards section of
the project's home page. First, it was awarded "Project of the Month" for December
2002 by the administrators of SourceForge. In the interview-style document we
prepared to put on the SourceForge POTM page, I wrote that I was impressed by the

•

•

•

Chapter 1

[13]

download rate of our product, which was three per minute at that time. (Since then
we have reached ten per minute on peak days.)

phpMyAdmin received 75% of the votes from the readers of both the German PHP
Magazin and its international version, in the category "Best PHP Application/Tool"
for 2003. This award was officially presented at the International PHP Conference
held at Frankfurt in November 2003 to two members of the team. The German PHP
Magazin hosted the readers choice again in 2005 and 2006; phpMyAdmin won for
both years in the same category.

SourceForge.net hosted its Community Choice Awards for the first time in 2006 and
phpMyAdmin won in two categories: Databases and System Administration. I
represented the team at LinuxWorld, Boston in April for the Awards presentation.
The project also won "Best PHP Application of the Year" at the fifth Annual OS/2
World Awards.

phpMyAdmin Features Summary
The goal of phpMyAdmin is to offer complete web-based management of MySQL
servers and data, and to keep up with MySQL and web standards evolution. While
the product is not perfect, it currently includes the most commonly requested
features and lots of extra features as well.

The development team constantly develops the product based on the reported bugs
and requested features, regularly releasing new versions.

phpMyAdmin offers features that cover basic MySQL database and table operations.
It also has an internal relational system that maintains metadata to support advanced
features. Finally, system administrators can manage users and privileges from
phpMyAdmin. It is important to note that phpMyAdmin's choice of available
operations depends on the rights the user has on a specific MySQL server.

The basic features consist of:

Database creation, deletion, renaming, and attribute change
Table creation, renaming, copying, and deletion
Table structure maintenance, including indexes
Special table operations (repair, optimization, changing type)
Data insertion, modification, deletion
Data display in horizontal/vertical mode, and Print view
Data navigation and sorting
Binary data uploading

•

•

•

•

•

•

•

•

Introducing phpMyAdmin

[14]

Data search (table or database)
Querying by example (multi-table)
Batch-loading of data (import)
Exporting structure and data in various formats, with compression
Multi-user and multi-server installation with web-based setup

The advanced features include:

Field-level comments
Foreign keys (with or without InnoDB)
Browse foreign table
Bookmarks of queries
Data dictionary
PDF relational schema and dictionary
SQL queries history
Connection to MySQL using either the traditional mysql extension or the
new mysqli extension (in PHP 5)
Character-set support for databases, tables, and fields (with MySQL 4.1)
Column contents transformation based on MIME type
Theme management to customize the interface's look

The server administration features consist of:

User and privileges management
Database privileges check
Verify server's runtime information and obtain configuration hints
Full server export

Summary
In this chapter we saw how the web has evolved as a means to deliver applications
and why we should use PHP/MySQL to develop these applications. We also took a
look at how phpMyAdmin is recognized as a leading application to interface MySQL
from the Web, the history of phpMyAdmin, and a brief list of its features.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Installing phpMyAdmin
It's time to install the product and to configure it minimally for first-time use.

Our reason for installing phpMyAdmin could be one of the following:

Our host provider did not install a central copy.
Our provider installed it, but the version installed is not current.
We are working directly on our enterprise's web server.

Some host providers offer an integrated web panel where we can manage accounts,
including MySQL accounts, and also a file manager that can be used to upload web
content. Depending on this, the mechanism we use to transfer phpMyAdmin to
our web space will vary. We will need some specific information before starting
the installation:

The web server's name or address. Here, we will assume it is
www.mydomain.com.
Our web server's account information (username, password), which will be
used either for FTP or SFTP transfer, SSH login, or web control panel login.
The MySQL server's name or address. Often this is localhost, which means
it is located on the same machine as the web server. We will assume this to be
mysql.mydomain.com.
Our MySQL server's account information (username, password).

System Requirements
The up-to-date requirements for a specific phpMyAdmin version are always stated
in the accompanying Documentation.html. We have noted in Chapter 1 – in the
What Is phpMyAdmin section – the minimum PHP and MySQL versions. It is strongly
recommended that the PHP mcrypt extension be present for improved performance
in cookie authentication mode – more on this in the present chapter.

•

•

•

•

•

•

•

Installing phpMyAdmin

[16]

On the browser side, cookie support must be activated, whatever authentication
mode we use.

Downloading the Files
There are various files available in the Downloads section of
http://www.phpmyadmin.net. There might be more that one version offered here;
always download the latest stable version. We only need to download one file, which
includes all the language files and works regardless of the platform (browser, web
server, MySQL, or PHP version). If we are using a server supporting only PHP3, the
latest stable version of phpMyAdmin is not a good choice to download. I recommend
using version 2.2.7-pl1, which is the latest version that supports PHP3. Thus we
will have to download a file with .php3 in its name. In this case, while following the
present instructions, we will have to transpose to .php3 each time we talk about
.php files.

The files offered have various extensions: .zip, .tar.bz2, .tar.gz. Download a
file having an extension for which you have the corresponding extractor. .zip is the
most universal file format in the Windows world, although it is bigger than .gz or
.bz2 (common in the Linux/Unix world). In the following examples, we will assume
that the chosen file was phpMyAdmin-2.8.2.zip.

After clicking on the appropriate file, we will have to choose the nearest mirror. The
file will start to download, and we can save it on our computer.

Installation
The next step depends on the platform you are using; the coming sections detail
the procedure for some common platforms. You may proceed directly to the
relevant section.

Installation on a Remote Server Using a
Windows Client
Using the File explorer, we double-click the phpMyAdmin-2.8.2.zip file we just
downloaded on the Windows machine; a file extractor should start, showing us all
the scripts and directories inside a main phpMyAdmin-2.8.2 directory, as shown here
using PowerArchiver:

Chapter 2

[17]

Use whatever mechanism your file extractor offers to save all the files, including
subdirectories, to some location on your workstation. Here, we have chosen c:\, so a
c:\phpMyAdmin-2.8.2 directory has been created for extraction.

Now it's time to transfer the whole directory structure c:\phpMyAdmin-2.8.2 to the
web server in our web space. We use our favorite FTP software or the web control
panel for the transfer.

The exact directory under which we transfer phpMyAdmin may vary: It could be
our public_html directory or another directory where we usually transfer web
documents. For further instructions about the exact directory to be used or the best
way to transfer the directory structure, we can consult our host provider's help desk.

After the transfer is complete, these files are no longer needed on our Windows
client; so we can remove them.

Installation on a Local Linux Server
Let's say we chose phpMyAdmin-2.8.2.tar.gz and downloaded it directly to
some directory on the Linux server. We move it to our web server's document root
directory (for example, /var/www/html) or to one of its subdirectories (for example,
/var/www/html/utilities). Then we extract it with the following shell command
or by using any graphical file extractor our window manager offers:

tar -xzvf phpMyAdmin-2.8.2.tar.gz

Installing phpMyAdmin

[18]

We ensure that the permissions and ownership of the directory and files are
appropriate for our web server; the web server user or group must be able to
read them.

Installation on Local Windows Servers
(Apache, IIS)
The procedure here is similar to that described in the Installation on a Remote Server
Using a Windows Client section, except that the target directory will be under our
DocumentRoot (for Apache) or our wwwroot (for IIS). Of course, we do not need to
transfer anything after the modifications of config.inc.php, as the directory is
already on the web space.

Apache is usually run as a service, so we have to ensure that the user under which
the service is running has normal read privileges to access our newly created
directory. The same principle applies to IIS, which uses the IUSR_machinename
user. This user must have read access to the directory. You can adjust permissions in
the Security/permissions tab of the directory's properties.

First Connection Configuration
Here we learn how to prepare and use the configuration file which contains
the parameters to connect to MySQL and which can be customized as per our
requirements. In this chapter, we will concentrate on the parameters that deal with
connection and authentication. Other parameters will be discussed in the chapters
where the corresponding features are explained.

Before configuring, we can rename the directory
phpMyAdmin-2.8.2 to something easier to remember,
like phpMyAdmin, phpmyadmin, admin, or whatever.
This way, we or our users will be able to visit an easily
remembered URL to start phpMyAdmin. We can also use a
symbolic link if our server supports this feature.

Configuration Principles
In versions before 2.8.0, a generic config.inc.php file was included in the
downloaded kit. Since 2.8.0, this file is no longer present in the directory structure.
Note that phpMyAdmin looks for this file in the first level directory – the same one
where index.php is located.

Chapter 2

[19]

Without a configuration file, phpMyAdmin uses its default settings as defined
in libraries/config.default.php and tries to connect to a MySQL server on
localhost, the same machine where the web server is running, with user root
and password NO. This is the default setup produced by most MySQL installation
procedures, even though it is not really secure. However, if our freshly installed
MySQL server still has the default root account, we will be able to login easily and
see a warning given by phpMyAdmin about such lack of security.

We can verify this fact by opening our browser and visiting
http://www.mydomain.com/phpmyadmin – substituting the proper values for
the domain part and the directory part. If we see phpMyAdmin's home page – as
described in Chapter 3 – it means the MySQL server is still configured by default.

If it's not the case, we should see these messages in the default language defined in
our browser:

Error. MySQL said: Access denied for 'root'@'@localhost' (password: NO)

Probably reason of this is, that you did not create configuration file.

At this point we have two choices:

Use the web-based setup script to generate a config.inc.php file
Manually create a config.inc.php file

These options are presented in the following sections. We should note that, even
if we use the web-based setup script, we should familiarize ourselves with the
config.inc.php file format, because the setup script does not cover all the possible
configuration options.

Web-Based Setup Script
The web-based setup mechanism is strongly recommended in order to avoid syntax
errors that could result from the manual creation of the configuration file. Indeed,
since this file must respect PHP's syntax, it's common for new users to experience
problems in this phase of the installation.

A warning is in order here: even if phpMyAdmin contains
translations for the user interface, the current version does
not have a translation for the setup itself.

•

•

Installing phpMyAdmin

[20]

To access the setup script, we can click on the link available in the message we
received previously, which points to http://www.mydomain.com/phpmyadmin/
scripts/setup.php. Here is what appears on the initial execution:

There are two warnings here. We will first deal with the second one – Not secure
connection. This message appears if we are accessing the web server over HTTP, an
insecure protocol. Since we are possibly going to input confidential information like
the user name and password in the setup phase, it's recommended to communicate
over HTTPS at least for this phase. HTTPS uses SSL(Secure Socket Layer) to encrypt
the communication and make eavesdropping impossible on the line. If our web
server supports HTTPS, we can simply follow the proposed link which will restart
the setup process, this time over HTTPS. Our example supposes we do so.

The first warning tells us that phpMyAdmin did not find a writable directory with
the name config and this is normal since it was not present in the downloaded kit.
Since the directory is not yet there, we observe that the Save and Load buttons in the
interface are grey. In this config directory we can:

Save the working version of the configuration file during the setup process
Load a previously prepared config.inc.php file

•

•

Chapter 2

[21]

It's not absolutely necessary that we create this configuration directory, since we
could download to our client machine the config.inc.php file produced by the
setup procedure, then upload it to phpMyAdmin in the first-level directory via the
same mechanism (say FTP) that we used to upload phpMyAdmin itself. However,
we'll nonetheless create this directory.

The principle here is that the web server must be able to write to this directory. There
is more than one way to achieve this. Here is one that would work on a Linux server,
assuming that the installation is done by user marc and that the web server is not
running under the group users:

cd phpMyAdmin
mkdir config
chown marc.users config
chmod o+rwx config

Having done that, we refresh the page in our browser and we see:

A single copy of phpMyAdmin can be used to manage many MySQL servers.
We will now define parameters describing our first MySQL server. In the Servers
section, we click Add and the following screen is shown:

Installing phpMyAdmin

[22]

A complete explanation of these parameters can be found in the following sections
of this chapter and in Chapter 11. For now, we notice that the setup process has
detected that PHP supports the mysqli extension, so this is the one that is chosen
by default. This extension is the programming library used by PHP to communicate
with MySQL.

Let's enter the minimum parameters required for a first connection. We assume that
our MySQL server is located on localhost, so we keep this value and all the proposed
values intact, except for the following:

User for config auth: we enter our user name, marc
Password for config auth: we enter our password, bingo

•

•

Chapter 2

[23]

We then click Add, and we get the New server added message. Now our setup
process knows about one MySQL server, and there are sections of the interface that
enable us to Edit or Delete these server settings:

We can have a look at the generated configuration lines by using the Configuration/
Display button—then we can analyze these parameters using the explanations given
in The config.inc.php File section later in this chapter.

At this point, this configuration is still just in memory, so we need to save it.
This is done via the Configuration/Save button. It saves config.inc.php in the
special config directory we created previously. This is a directory strictly used for
configuration purposes.

The last step is to move config.inc.php from the config directory to the top-
level directory – the one that contains index.php. This can be done via FTP or by
commands such as

cd config

mv config.inc.php ..

As a security measure, it's recommended to change the
permission on the config directory – for example, with
the chmod o-rwx config command. This is to block any
non-authorized writing in this directory.

Other configuration parameters can be set with these web-based setup pages. To do
so, we would have to:

1. Enable read and write access to the config directory
2. Copy the config.inc.php there
3. Start the web-based setup tool

In order to keep this book's text lighter, we will only refer to the parameters' textual
values in the following chapters.

Installing phpMyAdmin

[24]

Manual Creation of config.inc.php
We can create this text file from scratch using our favorite text editor. The exact
procedure depends upon which client operating system we are using; we can refer to
the Tips for Editing config.inc.php on a Windows Client section for further information.

The default value of all the possible configuration parameters that can be located
inside config.inc.php is defined in libraries/config.default.php. We can take
a look at this file to see the syntax used and further comments about configuration.
See the important note about this file in the Upgrading phpMyAdmin section of
this chapter.

Tips for Editing config.inc.php on a Windows
Client
This file contains special characters (Unix-style end of lines), so we must open it with
a text editor that understands this format. If we use the wrong text editor, this file
will be displayed with very long lines.

The best choice is a standard PHP editor. Another choice would be WordPad,
MetaPad or UltraEdit, but we should be careful not to add any characters (even
blank lines) at the beginning or end of the file. This would disturb the execution of
phpMyAdmin and generate the Cannot send header output... error message. If this
happens, refer to Chapter 19, Troubleshooting and Support.

Each time the config.inc.php file is modified, it will have to be transferred again to
our web space. This transfer might have to be done explicitly with a specific transfer
program, or it might be done by a feature of an editor like HomeSite, Komodo, or
PHPEdit, which can save directly via FTP.

The config.inc.php File
This file contains valid PHP code, defining the majority of the parameters (expressed
by PHP variables) that we can change to tune phpMyAdmin to our own needs. There
are also normal PHP comments in it, and we can comment our changes.

Be careful not to add any blank line at the beginning
or end of the file; this would hamper the execution of
phpMyAdmin.

Chapter 2

[25]

Starting with phpMyAdmin 2.6.0, there is another configuration file:
layout.inc.php. As this version offers theme management, this file contains
the theme-specific colors and settings. There is one layout.inc.php per theme,
located in themes/themename, for example, themes/original. We will cover the
modification of some of those parameters in Chapter 4 under the First Steps section.

PmaAbsoluteUri
The first parameter to have a look at is $cfg['PmaAbsoluteUri'] = '';

In most cases we can leave this one empty, as phpMyAdmin tries to auto-detect the
correct value. If we browse a table later and then edit a row and click Save, we will
receive an error message from our browser – for example, This document does not
exist. This means that the absolute URI that phpMyAdmin built in order to reach the
intended page was wrong, indicating that we must manually put the correct value in
this parameter.

For example, we would change it to:

$cfg['PmaAbsoluteUri'] = 'http://www.mydomain.com/phpMyAdmin_2.8.2/';

Server-Specific Sections
The next section of the file contains server-specific configurations, each starting with:

$i++;
$cfg['Servers'][$i]['host'] = '';

If we examine only the normal server parameters (other parameters will be covered
starting with Chapter 11), we see a section like the following for each server:

$i++;
$cfg['Servers'][$i]['host'] = '';
$cfg['Servers'][$i]['port'] = '';
$cfg['Servers'][$i]['socket'] = '';
$cfg['Servers'][$i]['connect_type'] = 'tcp';
$cfg['Servers'][$i]['extension'] = 'mysql';
$cfg['Servers'][$i]['compress'] = FALSE;
$cfg['Servers'][$i]['controluser'] = '';
$cfg['Servers'][$i]['controlpass'] = '';
$cfg['Servers'][$i]['auth_type'] = 'config';
$cfg['Servers'][$i]['user'] = 'root';
$cfg['Servers'][$i]['password'] = '';
$cfg['Servers'][$i]['only_db'] = '';

Installing phpMyAdmin

[26]

$cfg['Servers'][$i]['hide_db'] = '';
$cfg['Servers'][$i]['verbose'] = '';

In this section, we have to enter in $cfg['Servers'][$i]['host'] the hostname or
IP address of the MySQL server – for example, mysql.mydomain.com or localhost.
If this server is running on a non-standard port or socket, we fill in the correct values
in $cfg['Servers'][$i]['port'] or $cfg['Servers'][$i]['socket']. See the
section on connect_type for more details about sockets.

The displayed server name inside phpMyAdmin's interface will be the one entered in
'host' (unless we enter a non-blank value in the following parameter). For example:

$cfg['Servers'][$i]['verbose'] = 'Test server';

This feature can thus be used to hide the real server hostname as seen by the users.

extension
The traditional mechanism by which PHP can communicate with a MySQL server,
as available in PHP before version 5, is the mysql extension. This extension is still
available in PHP 5, but a new one called mysqli has been developed and should be
preferred for PHP 5, because of its improved performance and its support of the full
functionality of MySQL family 4.1.x. This extension is designed to work with MySQL
version 4.1.3 and higher.

In phpMyAdmin version 2.6.0, a new library has been implemented, making possible
the use of both extensions – choosing either for a particular server. We indicate the
extension we want to use in $cfg['Servers'][$i]['extension'].

PersistentConnections
Another important parameter (which is not server-specific but applies to all server
definitions) is $cfg['PersistentConnections']. For all servers to which we
connect using the mysql extension, this parameter, when set to TRUE, instructs PHP
to keep the connection to the MySQL server open. This speeds up the interaction
between PHP and MySQL. However, it is set to FALSE by default in config.inc.
php, because persistent connections are often a cause of resource depletion on servers
– MySQL refusing new connections. For this reason, the option is not even available
for the mysqli extension, so setting it to TRUE here would have no effect if you are
connecting with this extension.

connect_type, socket and port
Both the mysql and mysqli extensions automatically use a socket to connect to
MySQL if the server is on localhost. Consider this configuration:

Chapter 2

[27]

$cfg['Servers'][$i]['host'] = 'localhost';
$cfg['Servers'][$i]['port'] = '';
$cfg['Servers'][$i]['socket'] = '';
$cfg['Servers'][$i]['connect_type'] = 'tcp';
$cfg['Servers'][$i]['extension'] = 'mysql';

The default value for connect_type is tcp. However, the extension will use a socket
because it concludes that this is more efficient as the host is localhost, so in this
case, we can use tcp or socket as the connect_type. To force a real tcp connection,
we can specify 127.0.0.1 instead of localhost in the host parameter. Because the
socket parameter is empty, the extension will try the default socket. If this default
socket, as defined in php.ini, does not correspond to the real socket assigned to the
MySQL server, we have to put the socket name (for example, /tmp/mysql.sock) in
$cfg['Servers'][$i]['socket'].

If the hostname is not localhost, a tcp connection will occur – here, on the special
port 3307. However, leaving the port value empty would use the default 3306 port:

$cfg['Servers'][$i]['host'] = 'mysql.domain.com';
$cfg['Servers'][$i]['port'] = '3307';
$cfg['Servers'][$i]['socket'] = '';
$cfg['Servers'][$i]['connect_type'] = 'tcp';
$cfg['Servers'][$i]['extension'] = 'mysql';

compress Configuration
Starting with PHP 4.3.0 and MySQL 3.23.49, the protocol used to communicate
between PHP and MySQL allows a compressed mode. Using this mode provides
better efficiency. To take advantage of this mode, simply specify:

$cfg['Servers'][$i]['compress'] = TRUE;

Authentication Type: config
For our first test, we will use the config authentication type, which is easy to
understand. However, in the Multi-User Installation section, we will see more
powerful and versatile ways of authenticating.

Although it seems that we are logging in to phpMyAdmin, we are not! The
authentication system is a function of the MySQL server. We are merely using
phpMyAdmin (which is running on the web server) as an interface that sends our
user and password information to the MySQL server. Strictly speaking, we do not
log in to phpMyAdmin but through phpMyAdmin.

Installing phpMyAdmin

[28]

Using the config authentication type leaves our
phpMyAdmin open to intrusion, unless we protect it as
explained in the Security section of this chapter.

Here we enter our username and password for this MySQL server:

$cfg['Servers'][$i]['user'] = 'marc';
$cfg['Servers'][$i]['password'] = 'bingo';

We can then save the changes we made in config.inc.php.

Testing the First Connection
Now it's time to start phpMyAdmin and try connecting for the first time. This will
test the following:

The values we entered in the config file or on the web-based setup
The setup of the PHP component inside the web server – if we did a manual
configuration
Communication between web and MySQL servers

Due to a problem in phpMyAdmin 2.8.0 to 2.8.2, for these versions we should close
all windows of our browser at this point.

We start our browser and point it to the directory where we installed phpMyAdmin,
as in http://www.mydomain.com/phpMyAdmin. If this does not work, we try
http://www.mydomain.com/phpMyAdmin/index.php. (This would mean that our
web server is not configured to interpret index.php as the default starting document.)

If you still get an error, refer to Chapter 19, Troubleshooting and Support. We should
now see phpMyAdmin's home page. Chapter 3 gives an overview of the panels
seen now.

Multi-Server Configuration
The config.inc.php file contains at least one server-specific section but we can add
more, enabling a single copy of phpMyAdmin to manage many servers. Let us see
how to configure more servers.

•

•

•

Chapter 2

[29]

Servers Defined in the Configuration File
In the server-specific sections of the config.inc.php file, we see lines referring to
$cfg['Servers'][$i] for each server. Here, the variable $i is used so that one
can easily cut and paste whole sections of the configuration file to configure more
servers. While copying such sections, we should take care that the $i++; instruction
that precedes each section and is crucial to delimit the server sections is also copied.

Then, at the end of the sections, the following line controls what happens at startup:

$cfg['ServerDefault'] = 1;

The default value, 1, means that phpMyAdmin will connect by itself to the first
server defined or present this server choice by default when using advanced
authentication – more on this later in this chapter. We can specify any number, for
the corresponding server-specific section. We can also enter the value 0, signifying
no default server, in which case phpMyAdmin will present a server choice:

Arbitrary Server
Another mechanism can be used if we want to be able to connect to an undefined
MySQL server. First, we have to set the following parameter:

$cfg['AllowArbitraryServer'] = TRUE;

Then, we need to use the cookie authentication type, explained in the next section.
We will be able to choose the server and enter a username and a password.

This mechanism should probably be used in conjunction
with a reinforced security mechanism (see the Security
section), because any MySQL server accessible from our
web server could be connected to.

Installing phpMyAdmin

[30]

As seen here, we still can choose one of the defined servers in Server Choice, but we
can enter an arbitrary server name, a username, and a password:

Advanced Authentication
We might want to allow a single copy of phpMyAdmin to be used by a group of
persons, each having their own MySQL username and password and seeing only the
databases they have rights to. Or we might prefer to avoid having our username and
password in clear text in config.inc.php.

Authentication Types Offered
Instead of relying on a username/password pair stored in config.inc.php,
phpMyAdmin will communicate with the browser and get authentication data from
it. This enables true login for all users defined in a specific MySQL server, without
having to define them in the configuration file. There are two modes offered that
allow a controlled login to MySQL via phpMyAdmin: http and cookie. We will
have to choose the one that suits our specific situation and environment (more on
this in a moment). Both modes require that we first define a control user.

Chapter 2

[31]

The Control User
To be able to use authentication types for every kind of MySQL user (in MySQL, user
privileges may be expressed in various ways), we should define a control user and
password in the server-specific section of a server. If we do not define one, users who
have been defined in MySQL with a syntax of 'user'@'hostname' or 'user'@'%'
will be able to function normally with phpMyAdmin's features like creating a
database, and others won't.

The control user is a special user (the usual name we choose for it is pma, a familiar
abbreviation for phpMyAdmin) who has the rights to read some fields in the special
mysql database (which contains all the user definitions). phpMyAdmin sends
queries with this special control user only for the specific needs of authentication,
and not for normal operation. The commands to create the control user are available
in phpMyAdmin's Documentation.html and may vary from version to version. This
documentation contains the most current commands.

There is another reason to define a control user: to be able to use the advanced
relational features of phpMyAdmin.

When our control user is defined, we fill in the parameters as in the following
example:

$cfg['Servers'][$i]['controluser'] = 'pma';
$cfg['Servers'][$i]['controlpass'] = 'bingo';

I use the bingo password when I teach phpMyAdmin; it is
recommended to avoid using the same password for your
own installation.

HTTP Authentication
This mode, http, is the traditional mode offered in HTTP, in which the browser asks
for the username and password, sends them to phpMyAdmin, and keeps sending
them until all the browser's windows are closed.

To enable this mode, we simply use the following line:

$cfg['Servers'][$i]['auth_type'] = 'http';

Installing phpMyAdmin

[32]

This mode has some limitations:

PHP, depending on the version, might not support HTTP authentication. It
works when PHP is running as a module under Apache; for other cases, we
should consult the PHP documentation for our version.
If we want to protect phpMyAdmin's directory with a .htaccess file (see the
Security section in this chapter), this will interfere with HTTP authentication
type; we cannot use both.

There is not a true logout; we will have to close all browser windows to be able to
login again with the same username. Even considering those limitations, this mode
may be a valuable choice for the following reasons:

Some browsers (like Mozilla) can store the authentication information in
an encrypted form.
It is a bit faster than cookie processing.

Cookie Authentication
The cookie authentication mode is superior to http in terms of the functionalities
offered. It offers true login and logout, and can be used with PHP running on any
kind of web server. It presents a login panel (see the following figure) from within
phpMyAdmin. This can be customized since we have the application source code.
However, as you may have guessed, for cookie authentication, the browser must
accept cookies coming from the web server – but this is true for all authentication
modes starting with phpMyAdmin 2.8.0:

•

•

•

•

Chapter 2

[33]

This mode stores the username typed in the login screen into a permanent cookie
in our browser. The password is stored as a temporary cookie. In a multi-server
configuration, the username/password pair corresponding to each server is stored
separately. To protect the username/password secrecy against some attack methods
that target cookie content, they are encrypted using the Blowfish mechanism. So,
to use this mode, we have to define (once) in config.inc.php a secret password
that will be used to securely encrypt all passwords stored as cookies from this
phpMyAdmin installation.

This is done by putting a secret password here:

$cfg['blowfish_secret'] = 'SantaLivesInCanada';

Then, for each server-specific section, use the following:

$cfg['Servers'][$i]['auth_type'] = 'cookie';

The next time we start phpMyAdmin, we will see the login panel.

By default, phpMyAdmin displays (in the login panel) the last username for which
a successful login was achieved for this particular server, as retrieved from the
permanent cookie. If this behavior is not acceptable (if we would prefer that someone
else who logs in from the same workstation should not see the previous username),
we can set the following parameter to FALSE:

$cfg['LoginCookieRecall'] = FALSE;

A security feature was added in phpMyAdmin 2.6.0: a time limit for the validity
of the entered password. This feature helps to protect the working session. After a
successful login, our password is stored in a cookie, along with a timer. Every action
in phpMyAdmin resets the timer. If we stay inactive a certain number of seconds, as
defined in $cfg['LoginCookieValidity'], we are disconnected and have to login
again. The default is 1800 seconds.

The Blowfish algorithm used to protect the username and
password requires many computations. To achieve the
best possible speed, the PHP's mcrypt extension and its
accompanying library must be installed on our web server.
Otherwise, phpMyAdmin relies on an internally coded
algorithm which works but causes delays of several seconds
on almost every operation done from phpMyAdmin! This
is because the username and password information must
be decoded on every mouse click to be able to connect
to MySQL.

Installing phpMyAdmin

[34]

Security
Security can be examined at various levels:

Directory-level protection for phpMyAdmin
IP-based access control
The databases that a legitimate user can see
In-transit data protection

Directory-Level Protection
Suppose an unauthorized person is trying to execute our copy of phpMyAdmin. If
we used the simple config authentication type, anyone knowing the URL of our
phpMyAdmin will have the same effective rights on our data as us. In this case,
we should use the directory-protection mechanism offered by our web server
(for example, htaccess) to add a level of protection.

If we chose to use http or cookie authentication types, our data would be safe
enough, but we should take the normal precautions with our password (including its
periodic change).

The directory where phpMyAdmin is installed contains sensitive data. Not only the
configuration file but also ultimately all scripts stored there must be protected from
alteration. We should ensure that apart from us, only the web server effective user has
read access to the files contained in this directory and that only we can write to them.

phpMyAdmin's scripts never have to modify anything
inside this directory, except when we use the Save export
file to server feature, which is explained in Chapter 7.

Another possible attack is from other developers having an account on the same web
server as us. In this kind of attack, someone can try to open our config.inc.php
file. Since this file is readable by the web server, someone could try to include
our file from their PHP scripts. This is why it is recommended to use PHP's
open_basedir feature, possibly applying it to all directories from which such attacks
could originate.

IP-Based Access Control
An additional level of protection can be added, this time verifying the Internet
Protocol (IP) address of the machine from which the request to use phpMyAdmin
is received.

•

•

•

•

Chapter 2

[35]

To achieve this level of protection, we construct rules allowing or denying access,
and specify the order in which these rules will be applied.

Rules
The format of a rule is:

<'allow' | 'deny'> <username> [from] <source>

from being optional. Here are some examples:

allow Bob from 1.2.3.4

User Bob is allowed access from IP address 1.2.3.4.

allow Bob from 1.2.3/24

User Bob is allowed from any address matching the network 1.2.3
(this is CIDR IP matching).

deny Alice from 4.5/16

User Alice cannot access when located on network 4.5.

allow Melanie from all

User Melanie can login from anywhere.

allow Julie from localhost

Equivalent to 127.0.0.1

deny % from all

all can be used as an equivalent to 0.0.0.0/0, meaning any host. Here, the % sign
means any user.

The source part can also be formed with the special names localnetA, localnetB, or
localnetC. These represent the complete class A, B, or C network in which the web
server is located. Note that phpMyAdmin relies on the $_SERVER["SERVER_ADDR"]
PHP parameter for this feature. Usually we will have several rules. Let's say we wish
to have the two rules that follow:

allow Marc from 45.34.23.12
allow Melanie from all

We have to put them in config.inc.php (in the related server-specific section)
as follows:

$cfg['Servers'][$i]['AllowDeny']['rules'] =
 array('allow Marc from 45.34.23.12',
 'allow Melanie from all');

Installing phpMyAdmin

[36]

When defining a single rule or multiple rules, a PHP array is used, and we must
follow its syntax enclosing each complete rule within single quotes and separating
each rule from the next with a comma. Thus, if we have only one rule, we must still
use an array to specify it like this:

$cfg['Servers'][$i]['AllowDeny']['rules'] =
 array('allow Marc from 45.34.23.12');

The next parameter explains the order in which rules are interpreted.

Order of Interpretation for Rules
By default, this parameter is empty:

$cfg['Servers'][$i]['AllowDeny']['order'] = '';

This means that no IP-based verification is made.

Suppose we want to allow access by default, denying access only to some username/
IP pairs. We should use:

$cfg['Servers'][$i]['AllowDeny']['order'] = 'deny,allow';

In this case, all deny rules will be applied first, followed by allow rules. If a case is
not mentioned in the rules, access is granted. Being more restrictive, we'd want to
deny by default. We can use:

$cfg['Servers'][$i]['AllowDeny']['order'] = 'allow,deny';

This time, all allow rules are applied first, followed by deny rules. If a case is not
mentioned in the rules, access is denied.

The third (and most restrictive) way of specifying rules order is:

$cfg['Servers'][$i]['AllowDeny']['order'] = 'explicit';

deny rules are applied before allow rules, but to be accepted, a username/IP address
must be listed in the allow rules and not in the deny rules.

Simplified Rule for Root Access
Since the root user is present in almost all MySQL installations, it's often the target
of attacks. Starting with phpMyAdmin 2.6.1, a parameter permits us to easily block
all logins of the MySQL's root account, using the following:

$cfg['Servers'][$i]['AllowRoot'] = FALSE;

Chapter 2

[37]

Restricting the List of Databases
Sometimes it is useful to avoid showing in the left panel all the databases to which a
user has access. phpMyAdmin offers two ways of restricting: only_db and hide_db.

To specify the list of what can be seen, the only_db parameter is used. It may contain
a database name or a list of database names. Only these databases will be seen in the
left panel:

$cfg['Servers'][$i]['only_db'] = 'payroll';
$cfg['Servers'][$i]['only_db'] = array('payroll', 'hr);

The database names can contain MySQL wildcard characters like _ and %.

We can also indicate which database names must be hidden with the hide_db
parameter. It contains a regular expression (http://en.wikipedia.org/wiki/
Regular_expression) representing what to exclude. If we do not want users to see
all databases whose names begin with 'secret' we would use

$cfg['Servers'][$i]['hide_db'] = '^secret';

These parameters apply to all users for this server-specific configuration.

These mechanisms do not replace the MySQL privilege
system. Users' rights on other databases still apply, but
they cannot use phpMyAdmin's left panel to navigate to
their other databases or tables.

Protecting In-Transit Data
HTTP is not inherently immune to network sniffing (grabbing sensitive data off the
wire), so if we want to protect not only our username and password but all the data
that travels between our web server and browser, we have to use HTTPS.

To do so, assuming that our web server supports HTTPS, we just have to start
phpMyAdmin by putting https instead of http in the URL as follows:

https://www.mydomain.com/phpMyAdmin

If we are using PmaAbsoluteUri auto-detection:

$cfg['PmaAbsoluteUri'] = '';

phpMyAdmin will see that we are using HTTPS in the URL and react accordingly. If
not, we must put the https part in this parameter as follows:

$cfg['PmaAbsoluteUri'] = 'https://www.mydomain.com/phpMyAdmin';

Installing phpMyAdmin

[38]

Also, since phpMyAdmin 2.7.0, we can automatically switch users to an HTTPS
connection with this setting:

$cfg['ForceSSL'] = TRUE;

Upgrading phpMyAdmin
Normally, upgrading is just a matter of installing the newer version into a separate
directory and copying the previous version's config.inc.php to the new directory.
If the previous version is phpMyAdmin 2.3.0 or older, we cannot copy its
config.inc.php to the new version because the file format has changed too much.

An upgrade – or first-installation – path that should not be
taken is to copy libraries/config.default.php to
config.inc.php, since this default configuration file
is version-specific and is not guaranteed to work for
future versions.

New parameters appear from version to version. They are documented in
Documentation.html and defined in libraries/config.default.php. If
a configuration parameter is not present in config.inc.php, its value from
libraries/config.default.php will be used; so we do not have to include it into
config.inc.php if the default value suits us.

Special care must be taken to propagate the changes we might have made to the
layout.inc.php files, depending on the themes used. We may even have to copy
our custom themes subdirectories if we added our own themes to the structure.

Summary
In this chapter we took a look at the common reasons for installing phpMyAdmin,
the steps for downloading it from the main site, basic configuration, and uploading it
to our web server. We learned how to use a single copy of phpMyAdmin to manage
multiple servers and also the usage of authentication types to fulfill the needs of a
users' group while protecting authentication credentials. Securing our phpMyAdmin
installation and upgrading phpMyAdmin were also covered.

Interface Overview

Panels and Windows
The phpMyAdmin interface is composed of various panels and windows. Each panel
has a specific function, and it's not possible to view all panels at the same time. We
will first provide a quick overview of each panel and then take a detailed look later
in this chapter.

Login Panels
The login panel that appears depends on the authentication type chosen. For the
http type, it will take the form of our browser's HTTP pop-up screen. For the cookie
type, the phpMyAdmin-specific login panel will be displayed. (This is covered in
Chapter 2.) By default, a Server choice dialog and a Language selector are present on
this panel.

However, if we are using the config authentication type, no login panel is
displayed, and the first displayed interface contains the left and right panels.

Left and Right Panels
These panels go together and are displayed during most of our working session
with phpMyAdmin. The left panel is our navigation guide through the databases
and tables. The right panel is the main working area where the data is managed and
results appear. Its exact layout depends on the choices made from the left panel and
the sequence of operations performed.

Interface Overview

[40]

Home Page
The right panel can take the form of the Home page, which contains various links
related to MySQL operations or phpMyAdmin information, a Language selector,
and possibly the themes selector.

Views
In the right panel, we can choose the Database view, where we can take various
actions about a specific database, or the Table view, where we can access many
functions to manage a table. A system administrator can access the Server view as
well. All these views have a top menu, which takes the form of tabs that lead to
different sub-pages used to present information regrouped by common functions
(table structure, privileges, and so on).

Query Window
This is a distinct window that can be opened from the left or the right panel. Its main
purpose is to facilitate work on queries and display the results on the right panel.

Starting Page
When we start phpMyAdmin, we will see the following (depending on the
authentication type specified in config.inc.php and on whether it has more than
one server defined in it):

One of the login panels
The left and right panels with the home page displayed in the right panel

•

•

Chapter 3

[41]

Window Titles Configuration
When the left and right panels are displayed, the window's title changes to reflect
which MySQL server, database, and table are active. phpMyAdmin also shows some
information about the web server's host name if $cfg['ShowHttpHostTitle'] is set
to TRUE. What is displayed depends on another setting, $cfg['SetHttpHostTitle'].
If this setting is empty (as it is by default), the true web server's host name appears in
the title. We can put another string here, like 'my Web server', and this will be shown
instead of the true host name.

Seeing the web server's host name can come in handy when we have many
phpMyAdmin windows open, thus being connected to more than one web server. Of
course, each phpMyAdmin window can itself give access to many MySQL servers.

General Icon Configuration
When various warning, error, or information messages are displayed, they can
be accompanied by an icon, if $cfg['ErrorIconic'] is set to TRUE. Another
parameter, $cfg['ReplaceHelpImg'], when set to TRUE, displays a small icon
containing a question mark at every place where documentation is available for a
specific subject. These two parameters are set to TRUE by default, thus producing:

They can be independently set to FALSE. Setting both to FALSE would give:

Natural Sort Order for Database and Table
Names
Usually, computers sort items in lexical order, which gives the following results for a
list of tables:

table1
table10
table2
table3

Interface Overview

[42]

phpMyAdmin implements 'natural sort order' by default, as specified by
$cfg['NaturalOrder'] being TRUE. Thus the database and table lists in left and
right panels are sorted as:

table1
table2
table3
table10

Language Selection
A Language selector appears on the login panel (if any) and on the Home page. The
default behavior of phpMyAdmin is to use the language defined in our browser's
preferences, if there is a corresponding language file for this version.

The default language used in case the program cannot detect one is defined in
config.inc.php in the $cfg['DefaultLang'] parameter with 'en-iso-8859-1'.
This value can be changed. The possible values for language names are defined in
the libraries/select_lang.lib.php script as an array.

Even if the default language is defined, each user (especially on a multi-user
installation) can choose his or her preferred language from the selector:

The user's choice will be remembered in a cookie whenever possible.

Chapter 3

[43]

We can also force a single language by setting the $cfg['Lang'] parameter
with a value, such as 'en-iso-8859-1'. Starting with version 2.7.0, another
parameter, $cfg['FilterLanguages'], is available. Suppose we want to shorten
the list of available languages to English and Français—French because those are
the ones used exclusively by our users. We build a regular expression indicating
which languages we want to display based on the ISO codes of these languages. To
continue with our example, we would use:

$cfg['FilterLanguages'] = '^(fr|en)';

In this expression, the caret (^) means starting with and the (|) means or. The
expression indicates that we are restricting the list to languages whose corresponding
ISO codes start with fr or en.

By default, this parameter is empty, meaning that no filter is applied to the list of
available languages.

The small information icon beside Language gives access to phpMyAdmin's
translator page, which lists, by language, the official translator and the contact
information. This way we can reach the translator for corrections or to offer help on
untranslated messages.

On the Home page, we might also see a MySQL Charset selector or MySQL Charset
information (not in a selector). You can refer to Chapter 17, Character Sets and
Collations, for full details on this subject.

Themes
A theme system is available in phpMyAdmin starting with version 2.6.0. The
color parameters and the various icons are located in a structure under the themes
subdirectory. For each available theme, there is a subdirectory named after the
theme. It contains:

layout.inc.php for the theme parameters
css directory with the various CSS scripts
img directory containing the icons
screen.png, a screenshot of this theme

Theme Configuration
In config.inc.php, the $cfg['ThemePath'] parameter contains 'themes' by
default, which indicates which subdirectory the required structure is located in.
This could be changed to point to another directory where our company's specific
phpMyAdmin themes are located.

•

•

•

•

Interface Overview

[44]

The default chosen theme is specified in $cfg['ThemeDefault'], and is set to
'original'. If no theme selection is available for users, this theme will be used.

The original subdirectory should never be deleted;
phpMyAdmin relies on it for normal operations.

Theme Selection
On the Home page, we can offer a theme selector to users. Setting
$cfg['ThemeManager'] to TRUE (the default) shows the selector:

To help choose a suitable theme, the color palette icon next to Theme/Style brings
us screenshots of the available themes. We can then click on take it under the theme
we want. The chosen theme is remembered in a cookie. By default, the remembered
theme applies to all servers we connect to. To make phpMyAdmin remember one
theme per MySQL server, we set $cfg[ThemePerServer] to TRUE.

Left Panel
The left panel contains the following elements:

The logo (if $cfg['LeftDisplayLogo'] is set to TRUE), which is clickable
and linked to http://www.phpMyAdmin.net
The server list (if $cfg['LeftDisplayServers'] is set to TRUE)
The Home link or icon (takes you back to the phpMyAdmin home page)
A Log out link or icon
A link or icon leading to the Query window
Icons to display phpMyAdmin and MySQL documentation

•

•

•

•

•

•

Chapter 3

[45]

The databases and tables choices with a statistics about the number of tables
per database

If $cfg['MainPageIconic'] is set to TRUE (the default), we see the icons. If it is set to
FALSE, we see the Home, Log out, and Query window links.

The left panel can be resized by clicking and moving the vertical separation line in
the preferred direction to reveal more data in case the database or table names are
too long for the default left panel size.

We can customize the appearance of this panel – all parameters are located
in themes/themename/layout.inc.php except where noted otherwise.
$cfg['LeftWidth'] contains the default width of the left frame, in pixels. The
background color is defined in $cfg['LeftBgColor'] with a default value of
'#D0DCE0'. The $cfg['LeftPointerColor'] parameter, with a default value of
'#CCFFCC', defines the pointer color. (The pointer appears when we are using the
Full mode, discussed shortly.) To activate the left pointer for any theme being
used, a master setting, $cfg['LeftPointerEnable'], exists in config.inc.php.
Its default value is TRUE.

Database and Table List
The following examples show that no database has been chosen from the
drop-down menu:

•

Interface Overview

[46]

It is also possible to see the following screen:

This means that our current MySQL rights do not allow us to see any existing
databases.

A MySQL server always has at least one database (named
mysql), but in this case, we do not have the right to see
it. Moreover, since MySQL 5.0.2, a special database called
information_schema appears at all times in the database
list. It contains a set of views describing the metadata
visible for the logged-in user.

We may have the right to create one, as explained in Chapter 4.

Light Mode
The left panel can have two forms: the Light mode and the Full mode. The Light
mode is used by default, defined by a TRUE value in $cfg['LeftFrameLight']. The
Light mode shows a drop-down list of the available databases, and only tables of the
currently chosen database are displayed. Here we have chosen the mysql database:

Chapter 3

[47]

Clicking on the database name opens the right panel in the Database view, and
clicking on a table name opens the right panel in the Table view. (See the Right Panel
section for details.)

Tree Display of Database Names
A user might be allowed to work on a single database, for example marc. Some
system administrators offer a more flexible scheme by allowing user marc to create
many databases, provided their name all start with marc—like marc_airline and
marc_car. In this situation, the left panel can be set to display a tree of these database
names, like this:

Interface Overview

[48]

This feature is currently offered only in light mode and is controlled by these
parameters:

$cfg['LeftFrameDBTree'] = TRUE;
$cfg['LeftFrameDBSeparator'] = '_';

The default value of TRUE in $cfg['LeftFrameDBTree'] ensures that this feature is
activated. A popular value for the separator is'_'.

Full Mode
The previous examples were shown in Light mode, but setting the
$cfg['LeftFrameLight'] parameter to FALSE produces a complete layout of our
databases and tables using collapsible menus (if supported by the browser):

The number of tables per database is shown in brackets. The Full mode is not
selected by default; it can increase network traffic and server load if our current
rights give us access to a large number of databases and tables. Links must be
generated in the left panel to enable table access and quick-browse access to every
table, and the server has to count the number of rows for all tables.

Table Short Statistics
Moving the cursor over a table name displays comments about the table (if any) and
the number of rows currently in it:

Chapter 3

[49]

Quick-Browsing a Table
The small icon beside each table name is a quick way to browse the table's rows. It
opens the right panel in the Table view, browsing the first page of data from the table.

Nested Display of Tables within a Database
MySQL's data structure is based on two levels: databases and tables. This does not
allow subdivisions of tables per project, a feature often requested by MySQL users.
They must rely on having multiple databases, but this is not always allowed by their
provider. To help them with this regard, phpMyAdmin introduces a nested-levels
feature, based on the table naming.

Let's say we have access to the db1 database and we want to represent two
projects, marketing and payroll. Using a special separator (by default a
double underscore) between the project name and the table name, we create
the payroll__employees and payroll__jobs tables achieving a visually
interesting effect:

Interface Overview

[50]

This feature is parameterized with $cfg['LeftFrameTableSeparator'] (set here to
'__') to choose the characters that will mark each level change, and $cfg['LeftFra
meTableLevel'] (set here to '1') for the number of sub-levels.

The nested-level feature is only intended for improving
the left panel look. The proper way to reference the tables
in MySQL statements stays the same: for example, db1.
payroll__jobs.

Beginning with phpMyAdmin 2.6.0, a click in the left panel on the project name (here
payroll) opens this project in the right panel, showing only those project's tables.

Server-List Choice
If we have to manage multiple servers from the same phpMyAdmin window and
often need to switch between servers, it might prove useful to always have the list of
servers in the left frame:

Chapter 3

[51]

For this, the $cfg['LeftDisplayServers'] parameter must be set to TRUE. The
list of servers can have two forms: a drop-down list or links. Which form appears
depends on $cfg['DisplayServersList']. By default, this parameter is set to
FALSE, so we see a drop-down list of servers. Setting $cfg['DisplayServersList']
to TRUE produces a list of links to all defined servers:

Right Panel
The right panel is the main working area, and all the possible views for it are
explained in the following sections. Its appearance can be customized. The
background color is defined in $cfg['RightBgColor'], and the default color
is #F5F5F5. We can also select a background image by setting the URI of the
image we want (for example, http://www.domain.com/images/clouds.jpg) in
$cfg['RightBgImage'].

Interface Overview

[52]

Home Page
The home page may contain a varying number of links depending on the login mode
and the user's rights. A normal user may see it as:

The Home link from the left panel is used to display this page. It shows the
phpMyAdmin and MySQL versions, the MySQL server name, and the logged-in
user. We also see that this user does not have the privileges to create a database. We
see some links that relate to MySQL or phpMyAdmin itself. The Log out link might
not be there if automatic login was done, as indicated by the configuration file.

In this example, a normal user is not allowed to change his or her password from
the interface. To allow this password change, we set $cfg['ShowChgPassword'] to
TRUE. Privileged users have more options on the home page. They can always create
databases and have more links to manage the server as a whole (Server view):

Chapter 3

[53]

Another setting, $cfg['ShowPhpInfo'], can be set to TRUE if we want to see the
Show PHP Information link on the Home page.

Database View
phpMyAdmin goes into this view (shown in the screenshot that follows) every time
we click on a database name from the left frame, or if the USE command followed by
a database name is typed in a SQL box.

This is where we can see an overview of the database: the existing tables, a link to
create a table, the tabs to the Database view sub-pages, and some special operations
we might do on this database to generate documentation and statistics. There is
a checkbox beside each table to make global operations on that table (covered in
Chapter 10). The table is chosen by using the checkbox or by clicking anywhere on
the row's background. We can also see each table's size, if $cfg['ShowStats'] is
set to TRUE. This parameter also controls the display of table-specific statistics in the
Table view.

The initial screen that appears here is the database Structure sub-page. We might
want a different initial sub-page to appear when entering the Database view.
This is controlled by the $cfg['DefaultTabDatabase'] parameter, and the
available choices are given in the configuration file as comments.

Interface Overview

[54]

The number of records is obtained using a quick method – not by using a SELECT
COUNT(*) FROM TABLENAME. This quick method is usually accurate, except for
InnoDB tables, which returns an approximate number of records. To help get
the correct number of records, even for InnoDB, the $cfg['MaxExactCount']
parameter is available. If the approximate number of records is lower than this
parameter's value – by default, 20000—the slower SELECT COUNT(*) method will
be used.

Do not put a value too high for this parameter. You would
get correct results, but only after waiting for a few minutes,
if there are hundreds of thousands of records in your
InnoDB table.

Table View
This is a commonly used view, giving access to all table-specific sub-pages. Usually,
the initial screen is the table's Structure screen, which shows (note the upper part)

Chapter 3

[55]

all fields and indexes. Note that the header for this screen always shows the current
database and table names. We also see the comments set for the table:

The $cfg['DefaultTabTable'] parameter defines the initial sub-page on the Table
view. Some users prefer to avoid seeing the structure, because in production they
routinely run saved queries or enter the Search sub-page (explained in Chapter 9).

Server View
This view is entered each time we choose a MySQL-related option from the Home
page – for example, Databases or Show MySQL runtime information. A privileged
user will of course see more choices in the Server view. The Server view panel was
created to group together related server management sub-pages and enable easy
navigation between them.

Interface Overview

[56]

The default Server page is controlled by the $cfg['DefaultTabServer'] parameter.
This parameter defines the initial starting page as well. For multi-user installations,
it is recommended to keep the default value (main.php), which displays the
traditional home page. We could choose to display server statistics instead by
changing this parameter to server_status.php, or to see the users list with
server_privileges.php. Other possible choices are explained in the configuration
file, and the server administration pages are explained in Chapter 18.

Icons for Home Page and Menu Tabs
A configuration parameter, $cfg['MainPageIconic'], controls the appearance of
icons at various places on the right panel:

On the home page
At top of page when listing the Server, Database, and Table information
On the menu tabs in Database, Table, and Server views

This parameter is set to TRUE by default producing, for example:

We can also display menu items without tabs by setting the $cfg['LightTabs']
parameter to true, producing:

Query Window
It is often convenient to have a distinct window in which we can type and refine
queries and which is synchronized with the right panel. This window is called the
Query window. We can open this window by using the small SQL icon or the Query
window link from the left panel's icons or links zone.

This link or icon is displayed if $cfg['QueryFrame'] is set to TRUE. The TRUE for
$cfg['QueryFrameJS'] tells phpMyAdmin to open a distinct window and update
it using JavaScript commands; of course, this only works for a JavaScript-enabled
browser. If this is set to FALSE, clicking on Query window will only open the right
panel and will display the normal SQL sub-page.

•

•

•

Chapter 3

[57]

The full usability of the Query window is only achieved
with the distinct window mode.

The Query window itself has sub-pages, and it appears here over the right panel:

We can choose the dimensions (in pixels) of this window with
$cfg['QueryWindowWidth'] and $cfg['QueryWindowHeight']. Chapter 12
explains the Query window in more details, including the available SQL query
history features.

Site-Specific Header and Footer
Some users may want to display a company logo, a link to the helpdesk, or other
information on the phpMyAdmin interface. In the main phpMyAdmin directory, two
scripts – config.header.inc.php and config.footer.inc.php – are available for
this purpose. We can add our own PHP or XHTML code in these scripts, and it will
appear at the beginning (for header) or end of page (for footer) of the page:

On the cookie login page
On the right panel

•

•

Interface Overview

[58]

MySQL Documentation Links
phpMyAdmin displays links to the MySQL documentation at various places on its
interface. These links refer to the exact point in the official MySQL documentation
to learn about a MySQL command. We can customize the location, language, and
manual type referred to, with the following configuration parameters:

$cfg['MySQLManualBase'] = 'http://www.mysql.com/doc/en';
$cfg['MySQLManualType'] = 'searchable';

You may take a look at http://www.mysql.com/documentation to see the
languages in which the manual is available and change the parameters accordingly.
For the manual type, the most up-to-date possible values are explained as comments
in config.inc.php. Users who prefer to keep a copy of this documentation on a
local server would specify a local link here.

The $cfg['ReplaceHelpImg'] parameter controls how the links are displayed. Its
default value of TRUE makes phpMyAdmin display small question-mark icons, and
FALSE shows Documentation links.

Summary
In this chapter we covered the language selection system, the purpose of the left
and right panels, the contents of the left panel, including Light mode and Full
mode, and the contents of the right panel, with its various views depending on the
context. We also took a look at the Query window and the customization of MySQL
documentation links.

First Steps
Database Creation
Having seen the overall layout of phpMyAdmin's panel, we are ready to create a
database and our first table, insert some data in it, and browse it. Before creating
a table, we must ensure that we have a database for which the MySQL server's
administrator has given us the CREATE privilege. Various possibilities exist:

The administrator has already created a database for us, and we see its name
in the left panel; we don't have the right to create an additional database.
We have the right to create databases from phpMyAdmin.
We are on a shared host, and the host provider has installed a general Web
interface (for example, Cpanel) to create MySQL databases and accounts.

No Privileges?
In this case, the Home page looks like the following screenshot:

•

•

•

First Steps

[60]

This means that we must work with the databases already created for us, or ask the
MySQL server's administrator to give us the necessary CREATE privilege.

If you are the MySQL server's administrator, refer to
Chapter 18, MySQL Server Administration with phpMyAdmin.

First Database Creation Is Authorized
If phpMyAdmin detects that we have the right to create a database, the home page
looks as shown in the following figure:

In the input field, a suggested database name appears if the
$cfg['SuggestDBName'] parameter is set to TRUE – this is the default setting. The
suggested database name is built according to the privileges we possess.

If we are restricted to the use of a prefix, the prefix might be suggested in the input
field. (A popular choice for this prefix is the username.) Note that, in this case, the
prefix is followed by an ellipsis mark; we should remove this ellipsis mark and
complete the input field with an appropriate name.

The Collation choice can be left unchanged for now – more details on this in
Chapter 17.

We will assume here that we have the right to create a database named dbbook. We
enter dbbook in the input field and click on Create. Once the database is created, we
will see the following screen:

Chapter 4

[61]

Notice the following:

The main title of the right panel has changed to reflect the fact that we are
now located in this database.
A confirmation message regarding the creation is displayed.
The left panel has been updated; we see dbbook (0). Here, the name indicates
that the dbbook database has been created, and the number 0 indicates that it
contains no tables.
By default, the SQL query sent to the server by phpMyAdmin to create the
database is displayed in color.

phpMyAdmin displays the query it generated, because
$cfg['ShowSQL'] is set to TRUE. Looking at the
generated queries can be a good way of learning SQL.

It is important to examine the phpMyAdmin feedback to ascertain the validity of the
operations we make through the interface. This way, we can detect errors like typos
in the names or creation of a table in the wrong database.

Creating Our First Table
Now that we have a new database, it's time to create a table in it. The example table
we will use is the familiar books table.

•

•

•

•

First Steps

[62]

Choosing the Fields
Before creating a table, we should plan the information we want to store. This is
usually done during database design. In our case, a simple analysis leads us to the
following book-related data we want to keep:

International Standard Book Number (ISBN)
Book title
Number of pages
Author identification

For now, it is not important to have the complete list of fields (or columns) for our
books table; we will modify it by prototyping the application and refine it later. At
the end of the chapter, we will add a second table, authors, containing information
about each author.

Table Creation
We have chosen our table name and we know the number of fields. We enter this
information in the Create new table dialog and click Go to start creating the table:

We then see a panel specifying field information. Since we asked for four fields, we
get four rows, each row referring to information specific to one field:

•

•

•

•

Chapter 4

[63]

The two following images are enlargements of the left and right sides for this panel:

On pre-4.1 MySQL versions, the Collation and
Comments columns might not be shown at this point.
Please refer to Chapter 17, Character Sets and Collations for
collation issues, and to Chapter 11, Relational System, for
column commenting.

The MySQL documentation explains valid characters for table and field names
(if we search for Legal names). This may vary depending on the MySQL version.
Usually, any character that is allowed in a file name (except the dot and the slash) is
acceptable in a table name, and the length of the name must not exceed 64 characters.
The 64-character limit exists for field names as well, but we can use any character.

We enter our field names under the Field column. Each field has a type, the VARCHAR
type (variable character) being the default since it is the most commonly used.

First Steps

[64]

The VARCHAR type is widely used when the field content is alphanumeric, because
the contents will occupy only the space needed for it. This type requires a maximum
length, which we specify. If we forget to do so, a small pop-up message reminds us
later when we save. For the page count and the author identification, we have chosen
INT type (integer), as depicted in the following screenshot:

There are other attributes for fields, but we will leave them empty in this short
example. You might notice the Add 1 Field(s) dialog at the bottom of the screen. We
can use it to add some fields to this table creation panel by entering the appropriate
value and hitting Go. The number of rows would change according to the new
number of fields, leaving intact the information already entered about the first four
Fields. Before saving the page, let's define some keys.

Choosing Keys
A table should normally have a primary key (a field with unique content that
represents each row). Having a primary key is recommended for row identification,
better performance, and possible cross-table relations. A good value here is the ISBN;
so we select Primary for the isbn field. As $cfg['PropertiesIconic'] is set to TRUE
by default, we see icons indicating the various index possibilities. Moving the mouse
over them or over the radio buttons reveals Primary, Index, Unique, and Full text.

Index management (also referred to as Key management)
can be done at initial table creation, or later in the Structure
sub-page of Table view.

Chapter 4

[65]

To improve the speed of queries we will make by author ID, we should add an index
on this field. Our screen now looks like this:

At this point, we could change the table type using the Type drop-down menu, but
for now we will just accept the default type.

Now we are ready to create the table by clicking on Save. If all goes well, the next
screen confirms that the table has been created; we are now in the Structure sub-page
of Table view.

If we forget to specify a value in the Length column for a CHAR or VARCHAR,
phpMyAdmin would remind us before trying to create the table.

Of the various tabs leading to other sub-pages, some are not active, because it
would not make sense to browse or search a table if there are no rows in it. It would,
however, be acceptable to export, because we can export a table's structure even if it
contains no data.

First Steps

[66]

Manual Data Insertion
Now that we have a table, let's put some data in it manually. Before doing so, here
are some useful references on data manipulation within this book:

Chapter 5 explains how to change data.
Chapter 8 explains how to import data from existing files.
Chapter 10 explains how to copy data from other tables.
Chapter 11 explains the relational system (in our case, we will want to link to
the authors table).

•

•

•

•

Chapter 4

[67]

For now, click on the Insert link, which will lead us to the data-entry (or edit)
panel (shown in the screenshot that follows). We can enter the following sample
information for two books:

ISBN: 1-234567-89-0, title: A hundred years of cinema (volume 1), 600 pages,
author ID: 1
ISBN: 1-234567-22-0, title: Future souvenirs, 200 pages, author ID: 2

This screen has room to enter information for two rows – two books. This is because
the default value of $cfg['InsertRows'] is 2. By default, the Ignore checkbox is
ticked, which means that the second group of fields will be ignored. But as soon as
we enter some information in one field of this group and exit the field, the Ignore
box is unchecked.

We start by entering data for the first and second rows. The Value column width
obeys the maximum length for the character fields. If we want to enter data for more
books after these two, we select Insert another new row. We then click on Go to
insert the data:

•

•

First Steps

[68]

Data Entry Panel Tuning for CHAR and
VARCHAR
By default, phpMyAdmin displays an input field on a single line for the field
types, CHAR and VARCHAR. This is controlled by setting $cfg['CharEditing'] to
'input'. Sometimes we may want to insert line breaks (new lines) within the field.
(This insertion might be done manually with the Enter key, or while copying and
pasting lines of text from another on-screen source.) This can be done by changing
$cfg['CharEditing'] to 'textarea'. This is a global setting and will apply to all
fields of all tables, for all users of this copy of phpMyAdmin.

We can tune the number of columns and rows of this text area with:

$cfg['CharTextareaCols'] = 40;
$cfg['CharTextareaRows'] = 2;

Here, 2 for $cfg['CharTextareaRows'] means that we should be able to see
at least two lines before the browser starts to display a vertical scroll bar. These
settings apply to all CHAR and VARCHAR fields, and using them would generate a
different Insert screen as follows:

Chapter 4

[69]

With this entry mode, the maximum length of each field no
longer applies visually, but would be enforced by MySQL
at insert time.

Browse Mode
There are many ways to enter this mode. In fact, it is used each time query results are
displayed. We can enter this mode manually using the quick-browse icon on the left
panel, or by going to Table view for a specific table and clicking Browse:

First Steps

[70]

The checkboxes beside each row of results and the With
selected menu will be explained in Chapter 5.

SQL Query Links
In the Browse results, the first part displayed is the query itself, along with a
few links. The displayed links may vary depending on our actions and some
configuration parameters:

The Edit link appears if $cfg['SQLQuery']['Edit'] is set to TRUE. Its purpose is
to open the Query window, so that you can edit this query. (See Chapter 12, Entering
SQL Commands.)

Explain SQL is displayed if $cfg['SQLQuery']['Explain'] is set to TRUE. We will
see in Chapter 6, Changing Table Structure, what this link can be used for.

The Create PHP Code link can be clicked to reformat the query to the syntax
expected in a PHP script. It can then be copied and pasted directly at the place where
we need the query in the PHP script we are working on. Note that after a click this
link changes to Without PHP Code, which would bring back the normal query
display. This link is available if $cfg['SQLQuery']['ShowAsPHP'] is set to TRUE:

Chapter 4

[71]

Refresh is used to execute the same query again. The results might change, since a
MySQL server is a multi-user server, and other users might be modifying the same
tables. This link is shown if $cfg['SQLQuery']['Refresh'] is set to TRUE.

All these four parameters have a default value of TRUE in config.inc.php.

Navigation Bar
This bar is displayed at the top of results and also at the bottom. Column headers
can be repeated at certain intervals among results depending on the value entered in
repeat headers after....

In the previous example, the bar was simple:

The bar enables us to navigate from page to page, displaying an arbitrary number
of records (or rows), starting at some point in the results. Since we entered browse
mode by clicking Browse, the underlying query that generated the results includes
the whole table. However, this is not always the case.

Notice that we are positioned at record number 0 and are seeing records in
horizontal mode.

The default display mode is 'horizontal', as defined in $cfg['DefaultDisplay'].
We can also set this to 'vertical'. Another possibility is the 'horizontalflipped' choice,
which rotates the column headers by 90 degrees. If we try this choice, another
parameter, $cfg['HeaderFlipType'], plays a role. Its default value, 'css', displays
true rotated headers, but not every browser supports this – Internet Explorer 6 does
and produces:

On other browsers, it seems the best we can achieve is by setting
$cfg['HeaderFlipType'] to 'fake':

First Steps

[72]

Let's take another example, this time with a newly introduced table – the
student-course table. This table contains three fields: the student ID (referring to
a student table), the course ID (from a course table), and the end-date (when this
student ends this course). As this table has many rows (here 32109), the navigation
bar adapts itself:

This time, there are buttons labeled <<, <, >, and >> for easy access to the first page,
previous page, next page, and last page of the results. These symbols are displayed
in this manner because the default setting of $cfg['NavigationBarIconic'] is
TRUE. A FALSE here would produce a different set of labels:

Chapter 4

[73]

There is also a Page number drop-down menu, to go directly to one of the pages
located near the current page. Since there can be hundreds or thousands of pages, this
menu is kept small with only a few page numbers before and after the current page.
Selecting vertical mode on the student-course table generates the following screen:

By design, phpMyAdmin always tries to give quick results, and one way to achieve
this result is by adding a LIMIT clause in SELECT. If there is already a LIMIT clause
in the original query, phpMyAdmin will respect it. The default limit is 30 rows, set in
$cfg['MaxRows']. With multiple users on the server, this helps keeping the server
load to a minimum.

Another button is available on the navigation bar, but must be activated by setting
$cfg['ShowAll'] to TRUE. It would be very tempting for users to use this button
often, so on a multi-user installation of phpMyAdmin, it is recommended that it be
disabled (FALSE). When enabled, the navigation bar is augmented as shown:

Clicking on the Show all button retrieves all the rows of the current results set, which
might hit the execution time limit in PHP or a memory limit in the server or browser.

First Steps

[74]

If we enter a big number in the Show...rows dialog, the
same results will be achieved (and we may face the same
potential problems).

Sorting Results
In SQL, we can never be sure of the order in which the data is retrieved, unless we
explicitly sort the data. Some implementations of the retrieving engine may show
results in the same order as when data was entered, or by primary key, but a sure
way to get results in the order we want is by sorting them explicitly.

One obvious way to sort is by key. The Sort dialog shows all the keys already
defined. Here we see a key named PRIMARY, the name given to our primary key on
the isbn field when we checked Primary for this field at creation time:

This might be the only way to sort on multiple fields at once (for multi-fields indexes).

If we choose to sort by author_id (Descending), we see:

We now see a small red triangle pointing downwards beside the author_id header.
This means that the current sort order is 'descending'. Moving the mouse cursor over
the author_id header makes the red triangle change direction, to indicate what will
happen if we click on the header: a sort by ascending author_id.

In fact, all the column headers can be clicked to sort on this column, even if they are
not part of an index. We can confirm this by watching the SQL query at top of screen;
it should contain an ORDER BY clause.

Chapter 4

[75]

The default initial sort order is defined in $cfg['Order'] with ASC for ascending,
DESC for descending, or SMART, which means that fields of type DATE, TIME,
DATETIME, and TIMESTAMP would be sorted in descending order, and other field
types in ascending order.

Color-Marking Rows
When moving the mouse between rows, the row background color may change
to the color defined in $cfg['BrowsePointerColor']. This parameter can be
found in themes/themename/layout.inc.php. To enable this browse pointer for
all themes, $cfg['BrowsePointerEnable'] must be set to TRUE (the default) in
config.inc.php.

It may be interesting to visually mark some rows to highlight their importance for
personal comparison of data, or when showing data to people. Highlighting is done
by clicking the row. Clicking again removes the mark on the row. The chosen color
is defined by $cfg['BrowseMarkerColor'] (see themes/themename/layout.inc.
php). This feature must be enabled by setting $cfg['BrowseMarkerEnable'] to
TRUE, this time in config.inc.php – this sets the feature for all themes. We can mark
more than one row. Marking the row also activates the checkbox for this row:

Limiting the Length of Each Column
In the previous examples, we always saw the full contents of each column, because
their number of characters was within the limit defined by $cfg['LimitChars'].
This is a limit enforced on all non-numeric fields. If this limit was lower (say 10), the
display would be as follows:

This would help us see more columns at the same time (at the expense of seeing less
of each column).

First Steps

[76]

To reveal the full texts, we can click the T besides the column header, which toggles
between the full-text mode and the partial-text mode:

Browsing Distinct Values
There is a quick way to display all distinct values and the number of occurrences
for each value for each field. This feature is available on the Structure page. For
example, we want to know how many different authors we have in our books table
and how many books each one wrote. On the line describing the field we want to
browse – here author_id – we click the Browse distinct values icon or link.

We have a limited test set but we can nonetheless see the results:

Chapter 4

[77]

Browse-Mode Customization
Here are more parameters that control the appearance of results. These parameters
– except $cfg['RepeatCells'] – are located in themes/themename/layout.inc.php.

$cfg['Border']: The HTML tables used to present results have no border
by default because this parameter is set to 0; we can put a higher number
(for example 1 or 2) to add borders to the tables.
$cfg['ThBgcolor']: The tables mentioned have headers with #D3DCE3 as
the default background color.
$cfg['BgcolorOne'], $cfg['BgcolorTwo']: When displaying rows of
results, two background colors are used alternately; by default, those are
#CCCCCC and #DDDDDD.
$cfg['RepeatCells']: When many rows of data are displayed, we may lose
track of the meaning of each column; by default, at each 100th cell, column
headers are displayed.

Creating an Additional Table
In our (simple) design, we know that we need another table: the authors table. The
authors table will contain:

Author identification
Author's full name
Phone number

To create this table, we must go back to the Database view. In the left panel. We click
on dbbook in the left panel, and request the creation of another table with three fields:

•

•

•

•

•

•

•

First Steps

[78]

Using the same techniques used when creating the first table, we get:

Here we use the same field name (author_id, which is our primary key in this new
table) in order to be more consistent in our design. After saving the table structure,
we enter some data for authors 1 and 2. Use your imagination for this!

Summary
In this chapter, we explained how to create a database and tables, and how to enter
data manually in the tables. We also saw how to confirm the presence of data by
using the browse mode; including the SQL query links, navigation bar, sorting
options and row marking.

Changing Data
Data is not static; it often changes. This chapter focuses on editing and deleting data
and its supporting structures: tables and databases.

Edit Mode
When we browse a table or view results from a search on any single-table query,
small icons appear on the left or right of each table row:

The row can be edited with the pencil-shaped icon and deleted with the X-shaped
icon. The exact form and location of these controls are governed by:

$cfg['PropertiesIconic'] = TRUE;
$cfg['ModifyDeleteAtLeft'] = TRUE;
$cfg['ModifyDeleteAtRight'] = FALSE;

We can decide whether to display them on the left the right, or both sides.
The $cfg['PropertiesIconic'] parameter can have the values TRUE, FALSE, or
'both'. TRUE displays icons as seen in the previous image, FALSE displays Edit and
Delete (or their translated equivalent) as links, and 'both' displays the icon and
the text.

The small checkbox beside each row is explained in the Multi-Row Edit and the
Deleting Many Rows sections later in this chapter.

Clicking on the Edit icon or link brings the following panel, which is similar to the
data entry panel (except for the lower part):

Changing Data

[80]

In this panel, we can change data by directly typing (or by cutting and pasting
via the normal operating system mechanisms). We can also revert to the original
contents using the Reset button.

By default, the lower drop-down menus are set to Save (so that we make changes
to this row) and Go back to previous page (so that we can continue editing another
row on the previous results page). We might want to stay on the current page after
clicking Go – if we wanted to save and then continue editing – so we can choose Go
back to this page. If we want to insert yet another new row after saving the current
row, we just have to choose Insert another new row before saving. The Insert as
new row choice – below the Save choice – is explained in the section Duplicating
Rows of Data of this chapter.

Moving to Next Field with the Tab Key
People who prefer to use the keyboard can use the Tab key to go to the next field.
Normally, the cursor goes from left to right and from top to bottom, so it would
travel into the fields in the Function column (more on this in a moment). However,
to ease data navigation in phpMyAdmin, the normal order of navigation has been
altered; the Tab key first goes through each field in the Value column and then
through each one in the Function column.

Moving with Arrows
Another way of moving between fields is with the Ctrl+arrows keys. This method
might be easier than using the Tab key when many fields are on-screen. For this to
work, the $cfg['CtrlArrowsMoving'] parameter must be set to true; this is the
default value.

Chapter 5

[81]

Handling NULL Values
If the table's structure permits a NULL value inside a field, a small checkbox appears
in the field's Null column. Checking it puts a NULL value in the field. A special
mechanism has also been added to phpMyAdmin to ensure that, if data is typed into
the Value column for this field, the Null checkbox is cleared automatically. (This is
possible in JavaScript-enabled browsers.)

Here, we have modified the structure (as explained in Chapter 6) of the phone field
in the authors table to permit a NULL value. The Null checkbox is not checked here:

The data is erased after checking the Null box, as shown in the following screenshot:

The Edit panel will appear this way if this row is ever brought on-screen again.

Applying a Function to a Value
The MySQL language offers some functions that we may apply to data before
saving, and some of these functions appear in a drop-down menu beside each field if
$cfg['ShowFunctionFields'] is set to TRUE.

The function list is defined in the $cfg['Functions'] array. The most commonly
used functions for a certain data type are displayed first in the list. Some restrictions
are defined in the $cfg['RestrictColumnTypes'] and $cfg['RestrictFunctions
'] arrays to control which functions are displayed first.

Here are the definitions that restrict the function names to be displayed for the
VARCHAR type:

$cfg['RestrictColumnTypes'] = array(
 'VARCHAR' => 'FUNC_CHAR', [...]

Changing Data

[82]

$cfg['RestrictFunctions'] = array(
 'FUNC_CHAR' => array(
 'ASCII',
 'CHAR',
 'SOUNDEX',
 'LCASE',
 'UCASE',
 'PASSWORD',
 'OLD_PASSWORD',
 'MD5',
 'SHA1',
 'ENCRYPT',
 'COMPRESS',
 'UNCOMPRESS',
 'LAST_INSERT_ID',
 'USER',
 'CONCAT'
), [...]

As depicted in the following screenshot, we apply the UCASE function to the title
when saving this row:

This feature may be disabled by setting $cfg['ShowFunctionFields'] to FALSE to
gain some screen space (to be able to see more of the data).

Duplicating Rows of Data
During the course of data maintenance (for permanent duplication or for test
purposes), we often have to generate a copy of a row. If this is done in the same
table, we must respect the rules of key uniqueness.

Chapter 5

[83]

An example is in order here. Our author has written Volume 2 of his book about
cinema, and the only fields that need a slight change are the ISBN number and the
title. We bring the existing row on-screen, change these two fields, and choose Insert
as new row, as shown in the following screenshot:

When we click Go, another row is created with the modified information, leaving the
original row unchanged:

Multi-Row Editing
Starting with phpMyAdmin 2.5.5, the multi-row edit feature enables us to
use checkboxes on the rows we want to edit, and use the Change link (or the
pencil-shaped icon) in the With selected menu. The Check All / Uncheck All
links can also be used to quickly check or uncheck all the boxes. We can also click
anywhere on the row's data to activate the corresponding checkbox.

This brings up an Edit panel containing all the chosen rows, and the editing process
may continue while the data from these rows is seen, compared, and changed.

Changing Data

[84]

When we mark some rows with the checkboxes, we can
also perform two other actions on them: delete (see the
Deleting Many Rows section in this chapter) and export.
(See Chapter 7.)

Editing the Next Row
Starting with version 2.6.1, sequential editing is possible on tables that have a
primary key on an integer field. Our authors table meets the criteria. Let's see what
happens when we start editing the row having the author_id value 1:

The editing panel appears, and we can edit author number 1. However, in the
drop-down menu, the Edit next row choice is available. If chosen, the next
author – the first one whose primary key value is greater than the current primary
key value – will be available to edit.

Chapter 5

[85]

Deleting Data
phpMyAdmin's interface enables us to delete the following:

Single rows of data
Multiple rows of a table
All the rows in a table
All the rows in multiple tables

Deleting a Single Row
We can use the small X-shaped icon beside each row to delete the row. If the value
of $cfg['Confirm'] is set to TRUE, every MySQL DELETE statement has to be
confirmed before execution. This is the default, since it might not be prudent to allow
a row to be deleted with just one click!

The form of the confirmation varies depending on the browser's ability to execute
JavaScript. A JavaScript-based confirmation popup would look like the following
screenshot:

If JavaScript has been disabled in our browser, a distinct panel appears:

The actual DELETE statement will use whatever information is best to ensure the
deletion of only the intended row. In our case, a primary key had been defined and
was used in the WHERE clause. In the absence of a primary key, a longer WHERE clause

•

•

•

•

Changing Data

[86]

will be generated based on the value of each field. The WHERE clause might even
prevent the correct execution of the DELETE operation, especially if there are TEXT or
BLOB fields, because the HTTP transaction used to send the query to the web server
may be limited in length by the browser or the server.

Deleting Many Rows
A feature added to phpMyAdmin in version 2.5.4 is the multi-row delete. Let's say
we examine a page of rows and decide that some rows have to be destroyed. Instead
of deleting them one by one with the Delete link or icon – and because sometimes
the decision to delete must be made while examining a group of rows – there are
checkboxes beside rows in Table view mode:

These are used with the With selected X-shaped icon. A confirmation screen appears
listing all the rows that are about to be deleted. It is also possible to click anywhere
on the row's data to activate the corresponding checkbox.

Deleting All the Rows in a Table
To completely erase all the rows in a table (leaving its structure intact), we go to the
Database view and click on the database name in the left panel. We then click on the
trash can icon located on the same line as the table we want to empty:

Chapter 5

[87]

We get a message confirming the TRUNCATE statement (the MySQL statement used
to quickly empty a table). Emptying a table can also be done in Table view with the
Empty link located on the top menu:

Deleting data, either row-by-row or by emptying a table, is
a permanent action. No recovery is then possible except by
using a backup.

Deleting All Rows in Many Tables
The screen before last shows a checkbox to the left of each table name. We can choose
some tables, then in the With selected menu, choose the Empty operation as shown
in the following screen:

Of course, this decision must not be taken lightly!

Deleting Tables
Deleting a table erases the data and the table's structure. We can delete tables using
the Drop link in Table view:

Changing Data

[88]

In the Database view, we can delete a specific table by using the X-shaped icon for
that table. The same mechanism also exists for deleting more that one table (with the
drop-down menu and the Drop action).

The Empty and Drop actions are marked in red to better
indicate the inherent danger of these actions on data.

Deleting Databases
We can delete a whole database – including all its tables – using the Drop link in
Database view:

By default, $cfg['AllowUserDropDatabase'] is set to FALSE, so this link is hidden
to unprivileged users until this setting is manually changed to TRUE.

To help us think twice, a special message appears before a database is deleted: You are
about to DESTROY a complete database!

The database mysql containing all user and privilege
definitions is so important that the Drop button is
deactivated for this database, even for administrators.

Summary
In this chapter, we examined concepts like editing data, including the null field and
using the Tab key, applying a function to a value, duplicating rows of data, and
deleting data, tables, and databases.

Changing Table Structures
This chapter explores editing table definitions and using special column types. When
developing an application, requirements often change because of new or modified
needs. Developers must accommodate these changes through judicious table-
structure editing.

Adding a Field
Suppose that we need a new field to store a book's language and, that by default, the
books on which we keep data are written in English. We decide that the field will be
called language and will contain a code composed of two characters (en by default).

In the Structure sub-page of the Table view for the books table, we can find the Add
field dialog. Here, we specify how many new fields we want and where they will go.

The positions of the new fields in the table only matter from a developer's point of
view; we usually group the fields logically so that we can find them more easily in
the list of fields. The exact position of the fields will not play a role in the intended
results (output from the queries), because these results can be adjusted regardless
of the table structure. Usually, the most important fields (including the keys) are
located at the beginning of the table, but this is a matter of personal preference.

We choose to put the new field At End of Table, so we check the corresponding
radio button and click on Go:

Other possible choices would be At Beginning of Table and After (where we would
have to choose from the drop-down menu the field after which the new field must go).

Changing Table Structure

[90]

We see the familiar panel for the new fields, repeated for the number of fields asked
for. We fill it in, and this time, we enter a default value, en. We then click on Save.

This panel appeared in horizontal mode, the default for
$cfg['DefaultPropDisplay'].

Vertical Mode
If we set $cfg['DefaultPropDisplay'] to 'vertical', the panel to add new
fields (along with the panel to edit a field's structure) will be presented in vertical
order. The advantages of working in vertical mode become obvious especially
when there are more choices for each field, as explained in Chapter 16, MIME-Based
Transformations.

Let's see how the panel appears if we are in vertical mode and ask for three
new fields:

Chapter 6

[91]

Editing Field Attributes
On the Structure sub-page, we can make further changes to our table. For this
example, we have set $cfg['PropertiesIconic'] to 'both' to see the icons along
with their text explanation:

This panel does not allow every possible change to fields. It specifically allows:

Changing one field structure, using the Change link on a specific field
Removing a field: Drop
Adding a field to an existing Primary key
Setting a non-unique Index or a Unique index on a field
Setting a Fulltext index (offered only if the field type allows it)

These are quick links that may be useful in some situations, but they do not replace
the full index management panel, both of which are explained in this chapter.

We can also use the checkboxes to choose fields and, with the appropriate With
selected icons, edit the fields or do a multiple field deletion with Drop. The Check
All / Uncheck All option permits us to easily check or uncheck all boxes.

TEXT
We will now explore how to use the TEXT field type and the relevant configuration
values to adjust for the best possible phpMyAdmin behavior.

First we add to the books table a TEXT field called description:

•

•

•

•

•

Changing Table Structure

[92]

There are three parameters that control the layout of the text area that will be
displayed in Insert or Edit mode for the TEXT fields. First, the number of columns
and rows for each field is defined by:

$cfg['TextareaCols'] = 40;
$cfg['TextareaRows'] = 7;

This gives (by default) the following space to work on a TEXT field:

The settings impose only a visual limit on the text area, and a vertical scroll bar is
created by the browser if necessary.

Although MEDIUMTEXT, TEXT, and LONGTEXT
columns can accommodate more than 32K of data, some
browsers cannot always edit them with the mechanism
offered by HTML: a text area. In fact, experimentation has
convinced the phpMyAdmin development team to have
the product display a warning message, if the contents are
larger than 32K, telling users that it might not be editable.

The last parameter has an impact for LONGTEXT fields. Setting $cfg['LongtextDo
ubleTextarea'] to TRUE doubles the available editing space.

BLOB (Binary Large Object) Fields
BLOB fields are usually used to hold binary data (such as images and sounds), even
though the MySQL documentation implies that TEXT fields could be used for this
purpose. The MySQL 5.1 manual says "In some cases, it may be desirable to store
binary data such as media files in BLOB or TEXT columns" but another phrase,
"BLOB columns are treated as binary strings (byte strings)" seems to indicate that
binary data should really be stored in BLOB fields. Thus, phpMyAdmin's intention
is to work with BLOB fields to hold all binary data.

Chapter 6

[93]

We will see in Chapter 16, MIME-Based Transformations that there are special
mechanisms available to go further with BLOB fields, including being able to view
some images directly from within phpMyAdmin.

First we add a BLOB field, cover_photo, to our books table:

If we now browse the table, we can see the field length information, [BLOB – 0
Bytes], for each BLOB field:

This is because the $cfg['ShowBlob'] configuration directive is set to FALSE by
default, thus blocking the display of BLOB contents in Browse and Edit modes
(and showing a Binary - do not edit warning). This behavior is intentional – usually
we cannot do anything with binary data represented in plain text.

Binary Contents Uploads
If we now edit one row, we see the warning and a Browse… button. The exact
caption on this button depends on the browser. Even though editing is not allowed,
we can easily upload a text or binary file's contents into this BLOB column.

Let's choose an image file using the Browse button – for example, the logo_left.png
file in a test copy of the phpMyAdmin/themes/original/img directory located on our
client workstation – and click Go:

We need to keep in mind some limits for the upload size. Firstly, the BLOB field size
is limited to 64K, so phpMyAdmin reminds us of this limit with the Max: 65,536 Bytes
warning. Also, there could be limits inherent to PHP itself – see Chapter 8, Importing
Structure and Data – which would be also taken into account in this maximum size
value. We have now uploaded an image inside this field for a specific row:

Changing Table Structure

[94]

If $cfg['ShowBlob'] is set to TRUE, we see the following in the BLOB field:

To really see the image from within phpMyAdmin, refer to
Chapter 16, MIME-Based Transformations.

The $cfg['ProtectBinary'] parameter controls what can be done while editing
binary fields (BLOBs and any other field with the binary attribute). The default
value 'blob' protects against the editing of BLOB fields but allows us to edit other
fields marked as binary by MySQL. A value of 'all' would protect against editing
even binary fields. A value of FALSE would protect nothing, thus allowing us to edit
all fields. If we try the last choice, we see the following in the Edit panel for this row:

Chances are this is not our favorite image editor! In fact, data corruption may result
even if we save this row without touching the BLOB field. But the setting to remove
ProtectBinary exists because some users put text in their BLOB fields and they
need to be able to modify this text.

MySQL BLOB data types are actually similar to their corresponding TEXT data
types, but we should keep in mind that a BLOB has no character set whereas a
TEXT column has a character set that impacts sorting and comparison. This is why
phpMyAdmin can be configured to allow editing of BLOB fields.

ENUM and SET
Both these field types are intended to represent a list of possible values; the difference
is that the user can choose only one value from a defined list of values with ENUM,
and more than one value with SET. With SET, the multiple values all go into one
cell; multiple values do not imply the creation of more than one row of data.

Chapter 6

[95]

We add a field named genre and define it as an ENUM. For now, we choose to put
short codes in the value list and make one of them, 'F', into the default value:

In the value list, we have to enclose each value within single quotes, unlike in the
default value field. In our design, we know that these values stand for Fantasy, Child,
and Novel, but for now we want to see the interface's behavior with short codes. In
the Insert panel, we now see a radio box interface:

If we decide to have more self-describing codes, we can go back to Structure mode
and change the definition for the genre field. In the following example, we do not
see the complete value list because the field is not large enough, but what we entered
was 'Fantasy','Child','Novel'. We also have to change the default value to one of
the possible values, to avoid getting an error message while trying to save this file
structure modification.

With the modified value list, the Insert panel now looks as follows:

Observe that the radio buttons have been replaced by a drow-down list because the
possible values are longer.

Changing Table Structure

[96]

If we want more than one possible value selected, we have to change the field type to
SET. The same value list may be used, but now, using our browser's multiple value
selector (usually control-click), we can select more that one value:

For the previous example, we would store only the genre
codes in the books table, in a normalized data structure
and would rely on another table to store the description for
each code. We would not be using SET or ENUM in
this case.

DATE, DATETIME, and TIMESTAMP
We could use a normal character field to store date or time information, but DATE,
DATETIME, and TIMESTAMP are more efficient for this purpose. MySQL checks
the contents to ensure valid date and time information.

Calendar Popup
As an added benefit, phpMyAdmin offers a calendar popup for easy data entry.

We will start by adding a DATE field, date_published, to our books table. If we go
into Insert mode, we should now see the new field where we could type a date. A
Calendar icon is also available:

This icon brings a popup, synchronized to this DATE field: if there is already a value
in the field, the popup displays accordingly. In our case, there is no value in the field,
so the calendar shows the current date:

Chapter 6

[97]

Small symbols on each side of the month and year headers permit easy scrolling
through months and years, and a simple click on the date we want transports it to
our date_published field.

For a DATETIME or TIMESTAMP field, the popup offers to edit the time part:

TIMESTAMP Options
Starting with MySQL 4.1.2, there are more options that can affect a TIMESTAMP
column. Let's add to our books table a column named stamp of type TIMESTAMP.
As soon as we choose TIMESTAMP from the Type drop-down list – provided that
JavaScript has been activated in our browser – we see a new checkbox under the
Default column: CURRENT_TIMESTAMP. Note that in the Attributes column, we
can choose ON UPDATE CURRENT_TIMESTAMP.

Changing Table Structure

[98]

Index Management
phpMyAdmin has a number of index management options, which we will cover in
this section.

Single-Field Indexes
We have already seen how the Structure panel offers a quick way to create an index
on a single field, thanks to some quick links like Primary, Index, and Unique. Under
the field list, there is a section of the interface used to manage indexes:

This section has links to edit or delete every index. Here, the Field part lists only one
field per index, and we can see that the whole field participates in the index because
there is no size information after each field name – contrary to what will be seen in
our next example.

We will now add an index on the title. However, we want to restrict the length of
this index to reduce the space used by the on-disk index structure. The Create an
index on 1 columns option is appropriate, so we click Go. In the next screen, we
specify the index details as shown in the following screen:

Chapter 6

[99]

Here is how to fill in this panel:

Index name: A name we invent
Index type: We can choose INDEX or UNIQUE
Field: We select the field that is used as the index, which is the title field
Size: We enter 30 instead of 100 (the complete length of the field) to
save space

After saving this panel, we can confirm from the following screenshot that the index
is created and does not cover the whole length of the title field:

Multi-Field Indexes and Index Editing
In the next example, we assume that in a future application we will need to find the
books written by a specific author in a specific language. It makes sense to expand
our author_id index, adding the language field to it.

We click the Edit link (small pencil) on the line containing the author_id index; this
brings us to the following panel, which shows the current state of this index:

•

•

•

•

Changing Table Structure

[100]

Next, we choose Add to index 1 column(s); we then click Go. We select the language
field on the next panel. This time we do not have to enter a size since the whole field
will be used in the index:

For better documentation, we can change the Index name (author_language is
appropriate). We save this index modification and we are back to:

FULLTEXT Indexes
This special type of index allows for full-text searches. It is supported on tables of
type MyISAM for VARCHAR and TEXT fields. We can use the Fulltext quick link
in the fields list or go to the index management panel and choose Fulltext in the
drop-down menu:

Chapter 6

[101]

We want a FULLTEXT index on the description field so that we are able to locate
a book from words present in its description. After the index has been created, it
looks like:

Depending on the MySQL version, we might see 1 as the field length for the newly
created index. In fact, MySQL does not support the idea of an index length for
FULLTEXT indexes: the index is always on the whole field, but this 1 would be the
value reported by MySQL.

Table Optimization: Explaining a QueryOptimization: Explaining a Query: Explaining a Query
In this section, we want to get some information about the index that MySQL uses
for a specific query, and the performance impact of not having defined an index.

Let's assume we want to use the following query:

SELECT *
FROM `books`
WHERE author_id = 2 AND language = 'es'

We want to know which books written by author 2 are in the es language, our code
for Spanish.

To enter this query, we use the SQL link from the database or the table menu, or the
SQL query window. We enter this query in the query box and click Go. Whether the
query finds any results is not important right now.

Changing Table Structure

[102]

Let's look at the links: [Edit] [Explain SQL] [Create PHP Code] [Refresh]

We will now use the [Explain SQL] link to get information about which index
(if any) has been used for this query:

We can see that the EXPLAIN command has been passed to MySQL, telling us that
the possible_keys used is author_language. Thus, we know that this index will be
used for this type of query. If this index had not existed, the result would have been
quite different:

Here, possible_keys (NULL) and the type (ALL) mean that no index would be used
and that all rows would need to be examined to find the desired data. Depending on
the total number of rows, this could have a serious impact on the performance. We
can ascertain the exact impact by examining the query timing that phpMyAdmin
displays on each results page and comparing with or without the index:

Chapter 6

[103]

However, the difference in time can be minimal if we only have limited test data
compared to a real table in production.

Detection of Index Problems
Since version 2.6.1, phpMyAdmin tries to detect some common index problems. For
example, let's access the books table and add an index on the author_id column.
When we display this table's structure, we get a warning:

The intention here is to warn us about an inefficient index structure when
considering the whole table. We don't need to have two indexes that start with the
same column.

We should consider this feature as work in progress, and even the warnings emitted
by version 2.8.2 are not perfect in this matter.

Summary
In this chapter we saw how to add fields, including special field types like TEXT,
BLOB, ENUM, and SET, how to use a calendar popup for DATE, DATETIME,
and TIMESTAMP fields, and how to upload binary data into a BLOB field. We
also learned how to manage indexes (multi-field and full-text) and get feedback
from MySQL about which indexes are used in a specific query.

Exporting Structure and Data
Keeping good backups is crucial to a project. Backups consist of up-to-date backups
and intermediary snapshots taken during development and production phases. The
export feature of phpMyAdmin can generate backups and can also be used to send
data to other applications.

Dumps, Backups, and Exports
Let's first clarify some vocabulary. In MySQL documentation, you will encounter
the term dump and in other applications, the term backup or export. All these terms
have the same meaning in the phpMyAdmin context.

MySQL includes mysqldump, a command-line utility that can be used to generate
export files, but the shell access needed for command-line utilities is not offered by
every host provider. Also, access to the export feature from within the Web interface
is more convenient. This is why phpMyAdmin (since version 1.2.0) offers the Export
feature with more export formats than mysqldump. This chapter will focus on
phpMyAdmin's export features.

Before starting an export, we must have a clear picture of the intended goal of the
export, and the following questions may help:

Do we need the complete database or just some tables?
Do we need just the structure, just the data, or both?
Which utility will be used to import back the data? (Not every export format
can be imported by phpMyAdmin.)
Do we want only a subset of the data?
What is the size of the intended export, and of the link speed between us and
the server?

•

•

•

•

•

Exporting Structure and Data

[106]

Database Exports
In Database view, click the Export link. The default export panel looks like this:

The default values selected here depend on config.inc.php, more
specifically on the $cfg['Export'] array of parameters. For example, the
$cfg['Export']['format'] parameter is set to 'sql' so that the SQL export mode
is chosen by default.

The export panel has three sub-panels. The top panel Export and the bottom panel
Save as file are always there, and the third panel varies (using dynamic menu
techniques) so as to show the options for the export mode chosen (which is SQL here).

Chapter 7

[107]

The Export Sub-Panel
This sub-panel contains a table selector, where we choose the tables and the format
that we want. The SQL format is useful, for our needs, since it creates standard SQL
commands that would work on any SQL server. Other possible formats include
LaTeX, PDF, Microsoft Excel 2000, Microsoft Word 2000, Comma-Separated Values
(CSV), and XML. Another format, Native MS Excel, is available after further software
installation and configuration. (See the section Native MS Excel in this chapter.)

Even if we can export from phpMyAdmin into all these
formats, only the SQL and CSV formats can be imported
back using the current phpMyAdmin version. Use only
these two formats for backup.

We shall now discuss the formats (and the options available once they have been
chosen) that can be selected with the Export sub-panel.

SQL
We will start by clicking Select All; we want all the tables. We know that the tables
are small, so the on-screen export will not be too large. For the moment, let’s deselect
the Extended inserts checkbox. We then click Go, which produces the following
output:

-- phpMyAdmin SQL Dump
-- version 2.8.2
-- http://www.phpmyadmin.net
--
-- Host: localhost
-- Generation Time: Jul 15, 2006 at 03:32 PM
-- Server version: 5.0.21
-- PHP Version: 5.1.4
--
-- Database: 'dbbook'
--

-- --

--
-- Table structure for table 'authors'
--

CREATE TABLE 'authors' (

Exporting Structure and Data

[108]

 'author_id' int(11) NOT NULL,
 'author_name' varchar(30) NOT NULL,
 'phone' varchar(30) default NULL,
 PRIMARY KEY ('author_id')
) ENGINE=MyISAM DEFAULT CHARSET=latin1;

--
-- Dumping data for table 'authors'
--

INSERT INTO 'authors' ('author_id', 'author_name', 'phone') VALUES (1,
'John Smith', '+01 445-789-1234');
INSERT INTO 'authors' ('author_id', 'author_name', 'phone') VALUES (2,
'Maria Sunshine', '333-3333');

-- --

--
-- Table structure for table 'books'
--

CREATE TABLE 'books' (
 'isbn' varchar(25) NOT NULL,
 'title' varchar(100) NOT NULL,
 'page_count' int(11) NOT NULL,
 'author_id' int(11) NOT NULL,
 'language' char(2) NOT NULL default 'en',
 'description' text NOT NULL,
 'cover_photo' blob NOT NULL,
 'genre' set('Fantasy','Child','Novel') NOT NULL default 'Fantasy',
 'date_published' datetime NOT NULL,
 'stamp' timestamp NOT NULL default CURRENT_TIMESTAMP on update CURRENT_
TIMESTAMP,
 PRIMARY KEY ('isbn'),
 KEY 'by_title' ('title'(30)),
 KEY 'author_id' ('author_id','language'),
 FULLTEXT KEY 'description' ('description')
) ENGINE=MyISAM DEFAULT CHARSET=latin1;

--
-- Dumping data for table 'books'
--

INSERT INTO 'books' ('isbn', 'title', 'page_count', 'author_id',
'language', 'description', 'cover_photo', 'genre', 'date_published',
'stamp') VALUES ('1-234567-89-0', 'A hundred years of cinema (volume 1)',
600, 1, 'en', '', '', '', '0000-00-00 00:00:00', '0000-00-00 00:00:00');

Chapter 7

[109]

INSERT INTO 'books' ('isbn', 'title', 'page_count', 'author_id',
'language', 'description', 'cover_photo', 'genre', 'date_published',
'stamp') VALUES ('1-234567-22-0', 'Future souvenirs', 200, 2, 'en', '',
0x89504e470d0a10049454e44ae426082, '', '0000-00-00 00:00:00', '0000-00-00
00:00:00');
INSERT INTO 'books' ('isbn', 'title', 'page_count', 'author_id',
'language', 'description', 'cover_photo', 'genre', 'date_published',
'stamp') VALUES ('1-234567-90-0', 'A hundred years of cinema (volume
2)', 600, 1.12, 'en', '', '', '', '0000-00-00 00:00:00', '0000-00-00
00:00:00');

In this export example, the data for the second book (starting with 0x8950) has been
truncated for brevity. In fact, it would contain the full hexadecimal representation of
the cover_photo field of this book.

The first part of the export comprises comments (starting with the characters, --) that
detail the utility (and version) that created the file, the date, and other environment
information. We then see the CREATE and INSERT queries for each table.

Starting with version 2.6.0, phpMyAdmin generates ANSI-
compatible comments in the export file. These comments
start with --. They help with importing the file back on
other ANSI SQL-compatible systems. In previous versions,
the MySQL-specific character, '#', was used.

SQL Options
SQL options are used to define exactly what information the export will contain. We
may want to see the structure, the data, or both. Selecting Structure generates the
section with CREATE queries, and selecting Data produces INSERT queries:

Exporting Structure and Data

[110]

The options in Structure section are:

Add custom comment into header: We can add our own comments for
this export (for example, 'Monthly backup') which will show in the export
headers (after the PHP version number). If the comment has more than one
line, we must use the special character \n to separate each line.
Enclose export in a transaction: Starting with MySQL 4.0.11, we can use
the START TRANSACTION statement. This command, combined with SET
AUTOCOMMIT=0 at the beginning and COMMIT at the end, asks MySQL to
execute the import (when we will re-import this file) in one transaction,
ensuring that all the changes are done as a whole.
Disable foreign key checks: In the export file, we can add DROP TABLE
statements. However, normally a table cannot be dropped if it is referenced
in a foreign key constraint. This option overrides the verification by adding
SET FOREIGN_KEY_CHECKS=0 to the export file.
SQL export compatibility: This lets us choose the flavor of SQL that we
export. We must know about the system on which we intend to import this
file. Among the choices are MySQL 3.23, MySQL 4.0, Oracle, and ANSI.

•

•

•

•

Chapter 7

[111]

Add DROP TABLE: Adds a DROP TABLE IF EXISTS statement before each
CREATE TABLE statement, for example: DROP TABLE IF EXISTS 'authors';
This way, we can ensure that the export file can be executed on a database
in which the same table already exists, updating its structure but destroying
previous table contents.
Add IF NOT EXISTS: Adds the IF NOT EXISTS modifier to CREATE TABLE
statements, avoiding an error during import if the table already exists.
Add AUTO_INCREMENT value: Puts auto-increment information from
the tables into the export, ensuring that the inserted rows in the tables will
receive the correct next auto-increment ID value.
Enclose table and field names with backquotes: Backquotes are the normal
way of protecting table and field names that may contain special characters.
In most cases it is useful to have them, but not if the target server (where the
export file will be imported) is running a MySQL version older than 3.23.6,
which does not support backquotes.
Add into comments: This adds information (in the form of SQL comments)
which cannot be directly imported, but which nonetheless is valuable and
human-readable table information. The amount of information here varies
depending on the relational system settings, (See Chapter 11). In fact, with an
activated relational system, we would get the following choices:

Selecting all these choices would produce this more complete structure export:

CREATE TABLE 'books' (

 'isbn' varchar(25) NOT NULL default '',

 'title' varchar(100) NOT NULL default '',

 'page_count' int(11) NOT NULL default '0',

 'author_id' int(11) NOT NULL default '0',

 'language' char(2) NOT NULL default 'en',

 'description' text NOT NULL,

 'cover_photo' mediumblob NOT NULL,

 'genre' set('Fantasy','Child','Novel') NOT NULL default 'Fantasy',

 'date_published' datetime NOT NULL,

 'stamp' timestamp NOT NULL default CURRENT_TIMESTAMP on update
 CURRENT_TIMESTAMP,

 PRIMARY KEY ('isbn'),

•

•

•

•

•

Exporting Structure and Data

[112]

 KEY 'by_title' ('title'(30)),

 KEY 'author_id' ('author_id','language'),

 FULLTEXT KEY 'description' ('description')

) ENGINE=MyISAM DEFAULT CHARSET=latin1;

--

-- COMMENTS FOR TABLE 'books':

-- 'isbn'

-- 'book number'

-- 'page_count'

-- 'approximate'

-- 'author_id'

-- 'see authors table'

--

--

-- MIME TYPES FOR TABLE 'books':

-- 'cover_photo'

-- 'image_jpeg'

-- 'date_released'

-- 'text_plain'

-- 'description'

-- 'text_plain'

-- RELATIONS FOR TABLE 'books':
-- 'author_id'
-- 'authors' -> 'author_id'
--

The options available in the Data section are:

Complete inserts: Generates the following export for the authors table:
 INSERT INTO 'authors' ('author_id', 'author_name', 'phone')
 VALUES (1, 'John Smith', '+01 445 789-1234');
 INSERT INTO 'authors' ('author_id', 'author_name', 'phone')
 VALUES (2, 'Maria Sunshine', '+01 455 444-5683');

Notice that every column name is present in every statement. The resulting
file is bigger, but will prove more portable on various SQL systems, with the
added benefit of being better documented.
Extended inserts: Packs the whole table data into a single INSERT statement:

 INSERT INTO 'authors' VALUES (1, 'John Smith',
 '+01 445 789-1234'), (2, 'Maria Sunshine', '+01 455 444-5683');

•

•

Chapter 7

[113]

This method of inserting data is faster than using multiple INSERTs
statements, but is less convenient because it makes reading the resultant file
harder. Extended inserts also produces a smaller file, but each line of this file
is not executable in itself because each line does not have an INSERT state-
ment. If you cannot import the complete file in one operation, you cannot
split the file with a text editor and import it chunk by chunk.
Maximal length of created query: The single INSERT statement generated
for Extended inserts might become too big and could cause problems, this
is why we can set a limit here – in number of characters – for the length of
this statement.
Use delayed inserts: Adds the DELAYED modifier to INSERT statements. This
accelerates the INSERT operation because it is queued to the server, which
will execute it when the table is not in use. Please note that this is a MySQL
non-standard extension, and it's only available for MyISAM and ISAM tables.
Use ignore inserts: Normally, at import time, we cannot insert duplicate
values for unique keys – this would abort the insert operation. This option
adds the IGNORE modifier to INSERT and UPDATE statements, thus skipping
the rows which generate duplicate key errors.
Use hexadecimal for binary fields: A field with the BINARY attribute may
or may not have binary contents. This option makes phpMyAdmin encode
the contents of these fields in 0x format. Uncheck this option if the fields are
marked BINARY but are nevertheless in plain text like the mysql.user table.
Export type: The choices are INSERT, UPDATE, and REPLACE. The most
well-known of these types is the default INSERT – using INSERT statements
to import back our data. At import time, however, we could be in a situation
where a table already exists and contains valuable data, and we just want
to update the fields that are in the current table we are exporting. UPDATE
generates statements like UPDATE 'authors' SET 'author_id' = 1,
'author_name' = 'John Smith', 'phone' = '111-1111' WHERE
'author_id' = '1'; updating a row when the same primary or unique key
is found. The third possibility, REPLACE, produces statements like REPLACE
INTO 'authors' VALUES (1, 'John Smith', '111-1111'); which act like an
INSERT statement for new rows and updates existing rows, based on primary
or unique keys.

The Save as file Sub-Panel
In the previous examples, the results of the export operation were displayed
on-screen, and of course, no compression was made on the data. We can choose to
transmit the export file via HTTP by checking the Save as file checkbox. This triggers
a Save dialog into the browser, which ultimately saves the file on our local station:

•

•

•

•

•

Exporting Structure and Data

[114]

File Name Template
The name of the proposed file will obey the File name template. In this template, we
can use the special __SERVER__, __DB__ and __TABLE__ placeholders, which will
be replaced by the current server, database or table name (for a single-table export).
Note that there are two underscore characters before and after the words. We can
also use any special character from the PHP strftime function; this is useful for
generating an export file based on the current date or hour. Finally we can put any
other string of characters (not part of the strftime special characters), which will be
used literally. The file extension is generated according to the type of export. In this
case, it will be .sql. Here are some examples for the template:

__DB__ would generate dbbook.sql
__DB__-%Y%m%d gives dbbook-20031206.sql

The remember template option, when activated, stores the entered template settings
into cookies (for database, table, or server exports) and brings them back the next
time we use the same kind of export.

The default templates are configurable, via the following parameters:

$cfg['Export']['file_template_table'] = '__TABLE__';
$cfg['Export']['file_template_database'] = '__DB__';
$cfg['Export']['file_template_server'] = '__SERVER__';

Compression
To save transmission time and get a smaller export file, phpMyAdmin can compress
to zip, gzip, or bzip2 formats. phpMyAdmin has native support for the zip format,
but the gzip and bzip2 formats work only if the PHP server has been compiled with
the –-with-zlib or –-with-bz2 configuration option, respectively. The following
parameters control which compression choices are presented in the panel:

•

•

Chapter 7

[115]

$cfg['ZipDump'] = TRUE;
$cfg['GZipDump'] = TRUE;
$cfg['BZipDump'] = TRUE;

A system administrator installing phpMyAdmin for a number of users could choose
to set all these parameters to FALSE so as to avoid the potential overhead incurred
by a lot of users compressing their exports at the same time. This situation usually
causes more overhead than if all users were transmitting their uncompressed files at
the same time.

In older phpMyAdmin versions, the compression file was built in the web server
memory. Some problems caused by this were:

File generation depended on the memory limits assigned to running PHP
scripts.
During the time the file was generated and compressed, no transmission
occurred, so users were inclined to think that the operation was not working
and that something had crashed.
Compression of large databases was impossible to achieve.

The $cfg['CompressOnFly'] parameter (set to TRUE by default) was added to
generate (for gzip and bzip2 formats) a compressed file containing more headers.
Now, the transmission starts almost immediately. The file is sent in smaller chunks
so that the whole process consumes much lesser memory.

Choice of Character Set
Our Chapter 17 of this book will cover the subject of character sets in more detail.
However it's appropriate at this point to explain a little known feature – the
possibility of choosing the exact character set for our exported file.

This feature is activated by setting $cfg['AllowAnywhereRecoding'] to TRUE. We
can see here the effect on the interface:

•

•

•

Exporting Structure and Data

[116]

CSV
This format is understood by a lot of programs, and you may find it useful for
exchanging data. Note that it is a data-only format – there is no SQL structure here.

The available options are:

Fields terminated by: We put a comma here, which means that a comma will
be placed after each field.
Fields enclosed by: We place an enclosing character here (like the quote) to
ensure that a field containing the terminating character (comma) is not taken
for two fields.
Fields escaped by: If the export generator finds the Fields enclosed by
character inside a field, the Fields escaped by character will be placed before
it in order to protect it. For example, "John \"The Great\" Smith".
Lines terminated by: This decides the character that ends each line. We
should use the proper line delimiter here depending on the operating system
on which we will manipulate the resulting export file. Here we choose \n for
a UNIX-style new line.
Replace NULL by: This determines which string takes the place in the export
file of any NULL value found in a field.

•

•

•

•

•

Chapter 7

[117]

Put fields names in the first row: This gets some information about the
meaning of each field. Some programs will use this information to name
the column.

Finally we select the authors table.

The result is:

"author_id","author_name","phone"

"1","John Smith","+01 445 789-1234"

"2","Maria Sunshine","+01 455 444-5683"

CSV for MS Excel
This export mode produces a CSV file intended for Microsoft Excel. We can select the
exact Microsoft Excel edition.

PDF
Since version 2.8.0, it's possible to create a PDF report of a table by exporting in
PDF. This feature works on only one table at a time, and we must click the Save as
file checkbox for normal operation. We can add a title for this report, and it also
gets automatically paginated. In versions 2.8.0 to 2.8.2, this export format does not
support non-textual (BLOB) data as in the books table; if we try it in this table, it will
produce the wrong results.

•

Exporting Structure and Data

[118]

Here we test it on the authors table.

PDF is interesting because of its vectorial inherent nature: the results can be zoomed.
Let's have a look at the generated report, as seen from Acrobat Reader:

Microsoft Excel 2000
This export format directly produces an .xls file suitable for all software that
understands the Excel 2000 format. We can specify which string should replace any
NULL value. The Put field names in the first row option, when activated, generates
the table's column names as the first line of the spreadsheet. Again, the Save as file
checkbox should be checked. This produces a file where each table's column becomes
a spreadsheet column.

Chapter 7

[119]

Microsoft Word 2000
This export format directly produces a .doc file suitable for all software that
understands the Word 2000 format. We find options similar to those in the Microsoft
Excel 2000 export, and a few more. We can independently export the table's
Structure and Data.

Note that, for this format and the Excel format, we can choose many tables for one
export, but unpleasant results happen if one of these tables has non-textual data.
Here are the results for the authors table.

Exporting Structure and Data

[120]

LaTeX
LaTeX is a typesetting language. phpMyAdmin can generate a .tex file that
represents the table's structure and/or data in sideways tabular format. Note that
this file is not directly viewable, and must be further processed or converted for the
intended final media.

Chapter 7

[121]

The available options are:

Include table caption: Display captions to the tabular output
Structure and Data: The familiar choice to request structure, data, or both
Table caption: The caption to go on the first page
Continued Table caption: The caption to go on pages after page one
Relations, Comments, MIME-type: Other structure information we want
to be output. These choices are available if the relational infrastructure is in
place. (See Chapter 11.)

The generated LaTeX file for the data in the authors table looks like this:

% phpMyAdmin LaTeX Dump

% version 2.8.2

% http://www.phpmyadmin.net

%

% Host: localhost

% Generation Time: Jul 15, 2006 at 03:42 PM

% Server version: 5.0.21

% PHP Version: 5.1.4

%

% Database: 'dbbook'

%

%

% Structure: authors

%

 \begin{longtable}{|l|c|c|c|}

 \caption{Structure of table authors} \label{tab:authors-structure} \\

 \hline \multicolumn{1}{|c|}{\textbf{Field}} & \multicolumn{1}{|c|}{\
textbf{Type}} & \multicolumn{1}{|c|}{\textbf{Null}} & \
multicolumn{1}{|c|}{\textbf{Default}} \\ \hline \hline

\endfirsthead

 \caption{Structure of table authors (continued)} \\

 \hline \multicolumn{1}{|c|}{\textbf{Field}} & \multicolumn{1}{|c|}{\
textbf{Type}} & \multicolumn{1}{|c|}{\textbf{Null}} & \
multicolumn{1}{|c|}{\textbf{Default}} \\ \hline \hline \endhead \endfoot
\textbf{\textit{author_id}} & int(11) & Yes & \\ \hline

•

•

•

•

•

Exporting Structure and Data

[122]

author_name & varchar(30) & Yes & \\ \hline

phone & varchar(30) & Yes & NULL \\ \hline

 \end{longtable}

%

% Data: authors

%

 \begin{longtable}{|l|l|l|}

 \hline \endhead \hline \endfoot \hline

 \caption{Content of table authors} \label{tab:authors-data} \\\hline
\multicolumn{1}{|c|}{\textbf{author_id}} & \multicolumn{1}{|c|}{\
textbf{author_name}} & \multicolumn{1}{|c|}{\textbf{phone}} \\ \hline \
hline \endfirsthead

\caption{Content of table authors (continued)} \\ \hline \
multicolumn{1}{|c|}{\textbf{author_id}} & \multicolumn{1}{|c|}{\
textbf{author_name}} & \multicolumn{1}{|c|}{\textbf{phone}} \\ \hline \
hline \endhead \endfoot

1 & John Smith & +01 445-789-1234 \\ \hline

2 & Maria Sunshine & 333-3333 \\ \hline

 \end{longtable}

XML
This format is very popular nowadays for data exchange. Choosing XML in the
Export interface yields no choice for options. What follows is the output for the
authors table:

<?xml version="1.0" encoding="utf-8" ?>

<!--

-

- phpMyAdmin XML Dump

- version 2.8.2

- http://www.phpmyadmin.net

-

- Host: localhost

- Generation Time: Jul 15, 2006 at 03:44 PM

- Server version: 5.0.21

- PHP Version: 5.1.4

-->

Chapter 7

[123]

<!--

- Database: 'dbbook'

-->

<dbbook>

 <!-- Table authors -->

 <authors>

 <author_id>1</author_id>

 <author_name>John Smith</author_name>

 <phone>+01 445-789-1234</phone>

 </authors>

 <authors>

 <author_id>2</author_id>

 <author_name>Maria Sunshine</author_name>

 <phone>333-3333</phone>

 </authors>

</dbbook>

Native MS Excel (pre-Excel 2000)
Starting with version 2.6.0, phpMyAdmin offers an experimental module to export
directly in .xls format, the native spreadsheet format understood by MS Excel and
OpenOffice Calc. When this support is activated (more on this in a moment), we see
a new export choice:

We can optionally put our field names in the first row of the spreadsheet, with Put
fields names at first row.

This functionality relies on the PEAR module Spreadsheet_Excel_Writer, which
is currently at version 0.8 and generates Excel 5.0 format files. This module is
documented at http://pear.php.net/package/Spreadsheet_Excel_Writer, but
the complete installation in phpMyAdmin's context is documented here:

Exporting Structure and Data

[124]

1. Ensure that the PHP server has PEAR support. (The pear command will fail
if we do not have PEAR support.) PEAR itself is documented at
http://pear.php.net.

2. If we are running PHP in safe mode, we have to ensure that we are allowed
to include the PEAR modules. Assuming the modules are located under;
/usr/local/lib/php, we should have the line safe_mode_include_dir =
/usr/local/lib/php in php.ini.

3. We then install the module with: pear -d preferred_state=beta install
-a Spreadsheet_Excel_Writer (because the module is currently in beta
state). This command fetches the necessary modules over the Internet and
installs them into our PEAR infrastructure.

4. We need a temporary directory – under the main phpMyAdmin
directory – for the .xls generation. It can be created on a Linux system with:
mkdir tmp ; chmod o+rwx tmp.

5. We set the $cfg['TempDir'] parameter in config.inc.php to './tmp'.

We should now be able to see the new Native MS Excel data export choice.

Table Exports
The Export link in the Table view brings up the export sub-panel for a specific table. It
is similar to the database export panel, but there is no table selector. However, there is
an additional section for split exports before the Save as file sub-panel.

Chapter 7

[125]

Split-File Exports
The Dump 3 row(s) starting at record # 0 dialog enables us to split the file into
chunks. Depending on the exact row size, we can experiment with various values for
the number of rows to find how many rows can be put in a single export file before
the memory or execution time limits are hit in the web server. We could then use
names like books00.sql and books01.sql for our export files.

Selective Exports
At various places in phpMyAdmin's interface, we can export the results that we see,
or we can select the rows that we want to export.

Exporting Partial Query Results
When results are displayed from phpMyAdmin – here the results of a query asking
for the books from author_id 2 – an Export link appears at the bottom of the page:

Exporting Structure and Data

[126]

Clicking on this link brings up a special export panel containing the query on the top
along with the other table export options:

Chapter 7

[127]

The results of single-table queries can be exported in all the
available formats, while the results of multi-table queries
can be exported only in CSV, XML, and LaTeX formats.

Exporting and Checkboxes
Anytime we see results (when browsing or searching, for example), we can check
the boxes beside the rows that we want, and use the With selected: export icon to
generate a partial export file with just those rows.

Multi-Database Exports
Any user can export the databases to which he or she has access, in one operation.

On the Home page, the Export link brings us to the screen shown on the following
page, which has the same structure as the other export pages except for the
databases list:

Exporting Structure and Data

[128]

Exporting large databases may or may not work: this
depends on their size, the options chosen, and the web
server's PHP component settings (especially memory size
and execution time).

Saving the Export File on the Server
Instead of transmitting the export file over the network with HTTP, it is possible to
save it directly on the file system of the web server. This could be quicker and less
sensitive to execution time limits, because the whole transfer from server to client
browser is bypassed. Eventually, a file transfer protocol like FTP or SFTP can be used
to retrieve the file, since leaving it on the same machine would not provide good
backup protection.

Chapter 7

[129]

A special directory has to be created on the web server before saving an export file
on it. Usually this is a subdirectory of the main phpMyAdmin directory. We will use
save_dir as an example. This directory must have special permissions. First, the
web server must have write permissions for this directory. Also, if the web server's
PHP component is running in safe mode, the owner of the phpMyAdmin scripts
must be the same as the owner of save_dir.

On a Linux system, assuming that the web server is running as user apache and the
scripts are owned by user marc, the following commands would do the trick:

mkdir save_dir

chown marc.apache save_dir

chmod g=rwx save_dir

We also have to define the './save_dir' directory name in $cfg['SaveDir'].
We are using a path relative to the phpMyAdmin directory here, but an absolute path
would work just as well.

The Save as file section will appear with a new Save on server section:

After clicking Go, we will get a confirmation message or an error message (if the web
server does not have the required permissions to save the file).

For saving a file again using the same file name, check the
Overwrite existing file(s) box.

User-specific Save Directories
We can use the special string, %u, in the $cfg['SaveDir'] parameter. This string
will be replaced by the logged-in user name. For example, using:

$cfg['SaveDir'] = './save_dir/%u';

would give us the on-screen choice Save on server in ./save_dir/marc/ directory.

Exporting Structure and Data

[130]

Memory Limits
Generating an export file uses a certain amount of memory, depending on the size
of the tables and on the chosen options. The $cfg['MemoryLimit'] parameter can
contain a limit – in bytes – for the amount of memory used by the PHP script that
is running. By default, the parameter is set to 0, meaning that there is no limit. Note
that, if PHP has its safe mode activated, this memory limit has no effect.

Summary
In this chapter we examined the various ways to trigger an export: from the Database
view, the Table view, or a results page. We also listed the various available export
formats, their options, the possibility of compressing the export file, and the various
places where it might be sent.

Importing Structure and Data
In this chapter, we will learn how to bring back exported data that we might have
created for backup or transfer purposes. Exported data may also come from authors
of other applications, and could contain the whole foundation structure of these
applications and some sample data.

The current phpMyAdmin version (2.8.2) can directly import files containing
MySQL statements (usually having a .sql suffix, but not necessarily so) and CSV
files (comma-separated values, although the separator is not necessarily a comma).
There is also an interface to the MySQL LOAD DATA INFILE statement, enabling us to
load text files containing data, also called CSV. The binary field upload covered in
Chapter 6 can be said to belong to the import family.

Importing and uploading are synonyms in this context.

Since phpMyAdmin version 2.7.0, there is an Import menu in the Database view and
in the Table view that regroups import dialogs, and an Import files menu available
inside the Query window (as explained in Chapter 12).

The default values for the Import interface are defined in $cfg['Import'].

Before examining the actual import dialog, let's discuss some limits issues.

Limits for the Transfer
When we import, the source file is usually on our client machine, so it must travel to
the server via HTTP. This transfer takes time and uses resources that may be limited
in the web server's PHP configuration.

Importing Structure and Data

[132]

Instead of using HTTP, we can upload our file to the server using a protocol like FTP,
as described in the Web Server Upload Directories section. This method circumvents
the web server's PHP upload limits.

Time Limits
First, let's consider the time limit. In config.inc.php, the $cfg['ExecTimeLimit']
configuration directive assigns, by default, a maximum execution time of 300 seconds
(five minutes) for any phpMyAdmin script, including the scripts that process data
after the file has been uploaded. A value of 0 removes the limit and in theory gives
us infinite time to complete the import operation. If the PHP server is running in safe
mode, modifying $cfg['ExecTimeLimit'] will have no effect, because the limits
set in php.ini or in user-related web server configuration file (such as .htaccess or
virtual host configuration files) take precedence over this parameter.

Of course, the time it effectively takes depends on two key factors:

Web server load
MySQL server load

The time taken by the file as it travels between the client and
the server does not count as execution time, because the PHP
script only starts to execute after the file has been received
on the server. So the $cfg['ExecTimeLimit'] parameter
has an impact only on the time used to process data (like
decompression or sending it to the MySQL server).

Other Limits
The system administrator can use the php.ini file or the web server's virtual host
configuration file to control uploads on the server.

The upload_max_filesize parameter specifies the upper limit or the maximum file
size that can be uploaded via HTTP. This one is obvious, but another less obvious
parameter is post_max_size. Since HTTP uploading is done via the POST method,
this parameter may limit our transfers. For more details about the POST method,
please refer to http://en.wikipedia.org/wiki/Http#Request_methods.

The memory_limit parameter is provided to avoid web server child processes
from grabbing too much of the server memory—phpMyAdmin also runs as a child
process. Thus, the handling of normal file uploads, especially compressed dumps,
can be compromised by giving this parameter a small value. Here, no preferred

•

•

Chapter 8

[133]

value can be recommended – it depends on the size of uploaded data. The memory
limit can also be tuned via the $cfg['MemoryLimit'] parameter, as seen in Chapter 7.

Finally, file uploads must be allowed by setting file_uploads to On. Otherwise,
phpMyAdmin won't even show the Location of the textfile dialog. It would be
useless to display this dialog, since the connection would be refused later by the
PHP server.

Partial Imports
If the file is too big, there are ways in which we can resolve the situation. If we still
have access to the original data, we could use phpMyAdmin to generate smaller
CSV export files, choosing the Dump n rows starting at record # n dialog. If this is
not possible, we will have to use a text editor to split the file into smaller sections.
Another possibility is to use the UploadDir mechanism.

In recent phpMyAdmin versions, the Partial import feature can also solve this file
size problem. By selecting the Allow interrupt… checkbox, the import process will
interrupt itself if it detects it is close to the time limit. We can also specify a number
of queries to skip from the start, in case we successfully imported a number of rows
and wish to continue from that point.

Importing SQL Files
Any file containing MySQL statements can be imported via this mechanism. The
dialog is available in the Database view or the Table view, via the Import sub-page,
or in the Query window.

Importing Structure and Data

[134]

There is no relation between the currently selected table (here
authors) and the actual contents of the SQL file that will be
imported. All the contents of the SQL file will be imported, and
it is these contents that determine which tables or databases are
affected. However if the imported file does not contain any SQL
statements to select a database, all statements in the imported file
will be executed on the currently selected database.

Let's try an import exercise. First we make sure that we have a current SQL export
of the books table (as explained in Chapter 7). This export file must contain the
structure and data. Then we drop the books table. (Yes, really!) We could also simply
rename it. (See Chapter 10 for the procedure.)

Now it is time to import the file back. We should be on the Import sub-page, where
we can see the Location of the text file dialog. We just have to hit the Browse
button and choose our file.

phpMyAdmin is able to detect which compression method (if any) has been
applied to the file. The formats that the program can decompress vary depending on
the phpMyAdmin version and which extensions are available in the PHP component
of the web server.

However, to import successfully, phpMyAdmin must be informed of the
character set of the file to be imported. The default value is utf8, but if we know
that the import file was created with another character set, we should specify it
here. To start the import, we click Go:

Chapter 8

[135]

The importation proceeds, and we receive a message: Import has been successfully
finished, 2 queries executed. We can browse our newly created tables to confirm the
success of the import operation.

The file could be imported in a different database or even a MySQL server for testing.

Importing CSV Files
In this section, we will examine how to import CSV files. There are two possible
methods: CSV and CSV using LOAD DATA. The first method is implemented
internally by phpMyAdmin and is the recommended one for its simplicity. With the
second method, phpMyAdmin receives the file and passes it to MySQL to be loaded;
in theory, this method should be faster, but it has more requirements due to
MySQL itself.

Differences between SQL and CSV Formats
There are some differences between these two formats. The CSV file format contains
data only, so we must already have an existing table in place. This table does not
need to have the same structure as the original table (from which the data comes);
the Column names dialog enables us to choose which columns are affected in the
target table.

Because the table must exist prior to the import, the CSV import dialog is available
only from the Import sub-page in the Table view, not in the Database view.

Exporting a Test File
Before trying an import, let's generate an authors.csv export file from the authors
table. We use the default values in the CSV export options. We use the default
values. We can then Empty the authors table. (We still need the table structure.)

Importing Structure and Data

[136]

CSV
From the authors table menu, we select Import, and then CSV.

We can influence the behavior of the import in a number of ways. By default,
importing does not modify existing data (based on primary or unique keys), but
the Replace table data with file option instructs phpMyAdmin to use REPLACE
statements instead of INSERT; statement so that existing rows are replaced with the
imported data.

With Ignore duplicate rows, INSERT IGNORE statements are generated. These cause
MySQL to ignore any duplicate key problems during insertion. A duplicate key from
the import file does not replace existing data, and the procedure continues for the
next line of CSV data.

We can then specify the character that terminates each field, the character that
encloses data, and the character that escapes the enclosing character. Usually this is
\. For example, for a double quote enclosing character, if the data field contains a
double quote, it must be expressed as "some data \" some other data".

For Lines terminated by, recent versions of phpMyAdmin offer the auto choice,
which should be tried first as it automatically detects the end-of-line character. We

Chapter 8

[137]

can also specify manually what characters terminate the lines. The usual choice is \n
for UNIX-based systems, \r\n for DOS or Windows systems, and \r for Mac-based
system. If in doubt, we can use a hexadecimal file editor on our client computer (not
part of phpMyAdmin) to examine the exact codes.

By default, phpMyAdmin expects a CSV file with the same number of fields and
the same field order as the target table, but this can be changed by entering a
comma-separated list of column names in Column names, respecting the source
file format. For example, let's say our source file only contains the author ID and
author name information:

"1","John Smith"
"2","Maria Sunshine"

We'd have to put author_id, author_name in Column names to match the source file.

When we click Go, the import is executed and we get a confirmation. We might also
see the actual INSERT queries generated if the total size of the file is not too big.

CSV Using LOAD DATA
With this method, phpMyAdmin relies on the server's LOAD DATA INFILE or LOAD
DATA LOCAL INFILE mechanisms to do the actual import, instead of processing the
data internally. These statements are the fastest way for importing text in MySQL.
They cause MySQL to start a read operation from a file located on the MySQL server
(LOAD DATA INFILE) or from another place (LOAD DATA LOCAL INFILE), which in this
context, is always the web server's file system. If the MySQL server is located on
a computer other than the web server, we won't be able to use the LOAD DATA
INFILE mechanism.

Importing Structure and Data

[138]

Requirements
Relying on the MySQL server has some consequences. Using LOAD DATA INFILE
requires that the logged-in user possess a global FILE privilege. Also, the file itself
must be readable by the MySQL server's process.

Chapter 18 explains phpMyAdmin's interface to privileges
management for system administrators.

Using the LOCAL modifier in LOAD DATA LOCAL INFILE must be allowed by the
MySQL server and MySQL's client library used by PHP.

Both the LOAD methods are available from the phpMyAdmin LOAD interface,
which tries to choose the best possible default option.

Using the LOAD DATA Interface
We select Import from the authors table menu. Choosing CSV using LOAD DATA
brings up the following dialog:

The available options have already been covered in the CSV section.

In the familiar Location of the text file question, we choose our authors.csv file.

Finally, we can choose the LOAD method, as discussed earlier, by selecting the Use
LOCAL keyword option. We then click Go.

If all goes well, we see the confirmation screen:

Chapter 8

[139]

This screen shows the exact LOAD DATA LOCAL INFILE statement used. Here is what
has just happened in detail:

We chose authors.csv.
The contents of this file were transferred over HTTP and received by the
web server.
The PHP component inside the web server saved this file in a work directory
(here /mnt/san/tmp/) and gave it a temporary name, phpFI8km2.
phpMyAdmin informed of the location of this working file, built a LOAD
DATA LOCAL INFILE command and sent it to MySQL.
The MySQL server read and loaded the contents of the file into our target
table; it then returned the number of affected rows (2), which phpMyAdmin
displayed in the results page.

Web Server Upload Directories
To get around cases where uploads are completely disabled by a web server's PHP
configuration or where upload limits are too small, phpMyAdmin can read upload
files from a special directory located on the web server's file system. This mechanism
is applicable for SQL and CSV imports.

We first specify the directory name of our choice in the $cfg['UploadDir']
parameter; for example, './upload'. We can also use the %u string, as described in
Chapter 7, to represent the user's name.

Now, let's go back to the SQL sub-page and see what happens:

•

•

•

•

•

Importing Structure and Data

[140]

This error message is expected, since the directory does not exist. It is supposed
to have been created inside the current phpMyAdmin installation directory. The
message might also indicate that the directory exists, but can't be read by the
web server. (In PHP safe mode, the owner of the directory and the owner of the
phpMyAdmin-installed scripts must be the same.)

Using an SFTP or FTP client, we create the necessary directory and can upload a file
there (for example books.sql) bypassing any PHP timeouts or upload maximum
limits. Note that the file itself must have permissions that allow the web server to
read it. In most cases, the easiest way is to allow everyone to read the file.

Refreshing the SQL sub-page brings up the following:

Clicking Go should execute the file.

Automatic decompression is also available for the files located in the upload directory.
The file names should have extensions like .bz2, .gz, .sql.bz2, or .sql.gz.

Using the double extensions (.sql.bz2) is a better way to
indicate that a .sql file was produced and then compressed,
since we see all the steps used to generate this file.

Summary
In this chapter, we learned the various options in phpMyAdmin that allow us to
import data, the different mechanisms involved in importing SQL and CSV files, the
limits that we might hit when trying a transfer, and ways to bypass these limits.

Searching Data
Here we present mechanisms that can be used to find the data we are looking for
instead of just browsing tables page-by-page and sorting them. This chapter covers
single-table and whole database searches. Chapter 13 is a complement to this chapter
and presents multi-table query by example.

Single-Table Searches
This section describes the Search sub-page where single-table search is available.

Daily Usage of phpMyAdmin
The main usage of using the tool for some users is with the Search mode
for finding and updating data. For this, the phpMyAdmin team has made it
possible to define which sub-page is the starting page in Table view, with the
$cfg['DefaultTabTable'] parameter. Setting it to 'tbl_select.php' defines the
default sub-page to search.

With this mode, application developers can look for data in ways not expected by the
interface they are building, adjusting and sometimes repairing data.

Entering the Search Sub-Page
The Search sub-page can be accessed by clicking the Search link in the Table view.
This has been done here for the books table:

Searching Data

[142]

Selection of Display Fields
The first panel facilitates selection of the fields to be displayed in the results:

All fields are selected by default, but we can control-click other fields to make the
necessary selections.

Chapter 9

[143]

Here are the fields of interest to us in this example:

We can also specify the number of rows per page in the textbox just next to the field
selection. The Add search conditions box will be explained in the Applying a WHERE
Clause section later in this chapter.

Search Criteria by Field: Query by Example
The main usage of the Search panel is to enter criteria for some fields so as to retrieve
only the data in which we are interested. This is called Query by example because
we give an example of what we are looking for. Our first retrieval will concern
finding the book with ISBN 1-234567-89-0. We simply enter this value in the isbn box
and choose the = operator:

Searching Data

[144]

Clicking on Go gives the results shown in the following screenshot. The four fields
displayed are those selected in the Select fields dialog:

This is a standard results page. If the results ran in pages, we could navigate through
them, and edit and delete data for the subset we chose during the process. Another
feature of phpMyAdmin is that the fields used as the criteria are highlighted by
changing the border color of the columns to better reflect their importance on the
results page. It isn't necessary to specify that the isbn column be displayed. We
could have selected only the title column for display and selected the isbn column as
a criterion.

Print View
We see the Print view and Print view (with full texts) links on the results page. These
links produce a more formal report of the results (without the navigation interface)
directly to the printer. In our case, using Print view would produce the following:

This report contains information about the server, database, time of generation,
version of phpMyAdmin, version of MySQL, and SQL query used. The other link,
Print view (with full texts) would print the contents of TEXT fields in its entirety.

Wildcard Searching Searching
Let's assume we are looking for something less precise: all books with 'cinema' in
their title. First, we go back to the search page. For this type of search, we will use

Chapter 9

[145]

SQL's LIKE operator. This operator accepts wildcard characters: the % character
(which matches any number of characters) and the underscore (_) character (which
matches a single character). Thus we can use %cinema% to let phpMyAdmin
find any substring that matches the word 'cinema'. If we left out both wildcard
characters, we will get exact matches with only that single word.

Since phpMyAdmin 2.6.0, this substring matching has been made easier to access,
by adding it to the Operator drop-down list. We only have to enter the word cinema
and use the operator LIKE %...% to perform that match. We should avoid using this
form of the LIKE operator on big tables (thousands of rows), since MySQL does not
use an index for data retrieval in this case, leading to wait time that could add up
to half an hour (or more). This is why this operator is not the default one in the
drop-down list, even though this method of searching is commonly used on
smaller tables.

In versions prior to phpMyAdmin 2.6.0, we need to manually insert the %
characters to obtain '%cinema%', and use the LIKE operator from the
drop-down list.

We also specify that the results be sorted (in ascending order) by title. In the
search interface, only one sorting field is possible. Here is a screenshot showing
how we ask for a search on cinema with the operator LIKE %...%:

The LIKE operator can be used for other types of wildcard
searching, for example History%—which would search for this
word at the beginning of a title. This form of the LIKE query
also has the benefit of using an index, if MySQL finds one that
speeds up data retrieval.

Searching Data

[146]

Using either of these methods of doing the query gives the following results:

Wildcard characters available are the % character (which matches any number of
characters) and the underscore (_) character (which matches a single character).

Combining Criteria
We can use multiple criteria for the same query (for example, to find all English
books of more than 300 pages). We see here that there are more comparison choices
because of the page_count field being numeric:

Chapter 9

[147]

Applying a WHERE Clause
Sometimes we may want to enter a search condition that is not offered in the
Function list of the Query by example section; the list cannot contain every possible
variation available in the language. Let's say we want to find all English or French
books. For this, we can use the Add search conditions section:

The complete search expression is generated by combining the
search conditions, a logical AND, and the other criteria entered
in the Query by example lines.

We could have a more complex list of search conditions that would be entered in the
same textbox, possibly with brackets and operators like AND or OR.

A Documentation link points to the MySQL manual, where we can see a huge choice
of available functions. (Each function is applicable to a specific field type.)

Obtaining Distinct Results
Sometimes we want to avoid getting the same results more than once. For example,
if we want to know in which cities we have clients, displaying each city name once
is enough. Here we want to know the page counts of our books. In the Select Fields
dialog, we choose just the page_count field, and we check DISTINCT:

Searching Data

[148]

Clicking on Go produces the following:

Using DISTINCT, we only see the two page counts '200' and
'600' once. Without this option, the row containing '200' would
have appeared twice.

Complete Database Search
In the previous examples, searching was limited to one table. This assumes
knowledge of the exact table (and columns) where the necessary information might
be stored.

When the data is hidden somewhere in the database or when the same data can be in
various columns (for example, a title column or a description column), it is easier to
use the database-search method.

We enter the Search page in the Database view for the dbbook database:

In the Word(s) or value(s) section, we enter what we want to find. The % wildcard
character can prove useful here. We enter souvenirs.

Chapter 9

[149]

In the Find section, we specify how to treat the values entered: we might need to
find at least one of the words entered, all words (in no particular order), or the exact
phrase (words in the same order, somewhere in a column). Another choice is to use
a regular expression, which is a more complex way of doing pattern matching. We
will keep the default value, at least one of the words.

We can choose the tables to restrict the search or select all tables. As we only have
two (small) tables, we select them both.

As the search will be done on each row of every table selected,
we might hit some time limits if the number of rows or tables
is too big. Thus, this feature can be deactivated by setting
$cfg['UseDbSearch'] to FALSE. (It is set to TRUE
by default).

Clicking Go finds the following for us:

This is an overview of the number of matches and the relevant tables. We might
get some matches in tables in which we are not interested. However, for the matches
that look promising, we can Browse the results page, or we can Delete the
unwanted rows.

Summary
In this chapter we have covered single-table searches with query by example criteria
and additional criteria specification, selecting displayed values, and ordering results.
We also took a look at wildcard searches and full database search.

Table and Database
Operations

In the previous chapters, we dealt mostly with table fields. In this chapter, we will
learn how to perform some operations that influence tables or databases as a whole.
We will cover table attributes and how to modify them, and also discuss multi-table
operations.

Various links that enable table operations have been put together on one sub-page of
the Table view: Operations. Here is an overview of this sub-page:

Table and Database Operations

[152]

Table Maintenance
During the lifetime of a table, it repeatedly gets modified, and so grows and shrinks.
Outages may occur on the server, leaving some tables in a damaged state.

Using the Operations sub-page, we can perform various operations, but not every
operation is available for every table type:

Check table: Scans all rows to verify that deleted links are correct. Also, a
checksum is calculated to verify the integrity of the keys; we should get an
'OK' message if everything is all right.
Analyze table: Analyzes and stores the key distribution; this will be used
on subsequent JOIN operations to determine the order in which the tables
should be joined.
Repair table: Repairs any corrupted data. Note that the table might be so
corrupted that we cannot even go into Table view for it! In such a case, refer
to the Multi-Table Operations section for the procedure to repair it.
Optimize table: This is useful when the table contains overheads. After
massive deletions of rows or length changes for VARCHAR fields, lost bytes
remain in the table. phpMyAdmin warns us in various places (for example,
in the Structure view) if it feels the table should be optimized. This operation
is a kind of defragmentation for the table. It is available if the table type is
MyISAM or Berkeley DB.
Flush table: This must be done when there have been lots of connection
errors and the MySQL server blocks further connections. Flushing will clear
some internal caches and allow normal operations to resume.
Defragment table: Random insertions or deletions in an InnoDB table
fragment its index. The table should be periodically defragmented for faster
data retrieval.

The operations are based on the underlying MySQL
queries available – phpMyAdmin is only calling
those queries.

Changing Table Attributes
Table attributes are the various properties of a table. This section discusses the
settings for some of them.

•

•

•

•

•

•

Chapter 10

[153]

Table Type
The first attribute we can change is called Table storage engine:

This controls the whole behavior of the table: its location (on-disk or in-memory),
the index structure, and whether it supports transactions and foreign keys. The
drop-down list may vary depending on the table types supported by our
MySQL server.

Changing the table type may be a long operation if the
number of rows is large.

Table Comments
This allows us to enter comments for the table. These comments will be shown at
appropriate places (for example, in the left panel, next to the table name in the Table
view and in the export file).

Table and Database Operations

[154]

Note that the displaying of table comments as tool tips can be deactivated by setting
$cfg['ShowTooltip'] to FALSE (it is TRUE by default), producing:

The default value of $cfg['ShowTooltipAliasDB'] and $cfg['ShowTooltipAlias
TB'] (FALSE) produces the behavior we have seen earlier: the true database and table
names are displayed in the left panel and in the Database view for the Structure
sub-page. Comments appear when the mouse pointer is moved over a table name. If
one of these parameters is set to TRUE, the corresponding item (database names for
DB and table names for TB) will be shown as the tooltip instead of the names. This
time, the mouse-over shows the true name for the item. This is convenient when the
real table names are not meaningful.

There is another possibility for $cfg['ShowTooltipAliasTB']: the 'nested' value.
Here is what happens if we use this feature:

The true table name is displayed in the left panel.
The table comment (for example project__) is interpreted as the project
name and is displayed as such. (See the Nested Display of Tables Within a
Database section in Chapter 3).

Table Order
When we Browse a table or execute a statement such as SELECT * from books,
without specifying a sort order, MySQL uses the order in which the rows are
physically stored. This table order can be changed with the Alter table order by
dialog. We can choose any field, and the table will be reordered once on this field.
We choose author_id in the example, and after we click Go, the table gets sorted on
this field.

Reordering is convenient if we know that we will be retrieving rows in this order
most of the time. Moreover, if later we use an ORDER BY clause and the table is
already physically sorted on this field, the performance should be higher.

This default ordering will last as long as there are no changes in the table
(no insertions, deletions, or updates). This is why phpMyAdmin shows the
(singly) warning.

•

•

Chapter 10

[155]

After the sort has been done on author_id, books for author 1 will be displayed
first, followed by the books for author 2, and so on. (We are talking about a default
browsing of the table without explicit sorting.) We can also specify the sort order:
Ascending or Descending.

If we insert another row, describing a new book from author 1, and then click
Browse, the book will not be displayed along with the other books for this author
because the sort was done before the insertion.

Table Options
Other attributes that influence the table's behavior may be specified using the Table
options dialog:

The options are:

pack_keys: Setting this attribute results in a smaller index; this can be read
faster but takes more time to update. Available for MyISAM and ISAM
table types.
checksum: This makes MySQL compute a checksum for each row. This
results in slower updates, but easier finding of corrupted tables. Available for
MyISAM only.
delay_key_write: This instructs MySQL not to write the index updates
immediately but to queue them for later, which improves performance.
Available for MyISAM only.

•

•

•

Table and Database Operations

[156]

auto-increment: This changes the auto-increment value. It is shown only if
the table's primary key has the auto-increment attribute.

Renaming, Moving, and Copying Tables
The Rename operation is the easiest to understand: the table simply changes its
name and stays in the same database.

The Move operation (shown in the following screen) can manipulate a table in two
ways: change its name and also the database in which it is stored:

Moving a table is not directly supported by MySQL, so phpMyAdmin has to create
the table in the target database, copy the data, and then finally drop the source table.

The Copy operation leaves the original table intact and copies its structure or data
(or both) to another table, possibly in another database. Here, the books-copy table
will be an exact copy of the books source table. After the copy, we will stay in the
Table view for the books table unless we selected Switch to copied table.

The Structure only copy is done to create a test table with the same structure.

•

Chapter 10

[157]

Appending Data to a Table
The Copy dialog may also be used to append (add) data from one table to another.
Both tables must have the same structure. This operation is achieved by entering the
table to which we want to copy the data of the current table and choosing Data only.

For example, we would want to append data when book data comes from various
sources (various publishers), is stored in more than one table, and we want to
aggregate all the data to one place without using the MRG_MyISAM storage engine.

Multi-Table Operations
In the Database view, there is a checkbox next to each table name and a drop-down
menu under the table list. This enables us to quickly choose some tables and perform
an operation on all those tables at once. Here we select the books-copy and the
books tables, and choose the Check operation for these tables.

We could also quickly select or deselect all the checkboxes with Check All /
Uncheck All.

Repairing an "in use" Table
The multi-table mode is the only method (unless we know the exact SQL query to
type) for repairing a corrupted table. Such tables may be shown with the in use flag
in the database list. Users seeking help in the support forums for phpMyAdmin often
receive this tip from experienced phpMyAdmin users.

Table and Database Operations

[158]

Database Operations
The Operations tab in the Database view gives access to a panel that enables us to
perform operations on a database taken as a whole.

Chapter 10

[159]

Renaming a Database
Starting with phpMyAdmin 2.6.0, a Rename database dialog is available. Although
this operation is not directly supported by MySQL, phpMyAdmin does it indirectly
by creating a new database, renaming each table (thus sending it to the new
database), and dropping the original database.

Copying a Database
Since phpMyAdmin 2.6.1, it is possible to do a complete copy of a database, even if
MySQL itself does not support this operation.

Summary
In this chapter we covered the operations we can perform on whole tables or
databases. We also took a look at table maintenance operations for table repair
and optimization, changing various table attributes, table movements, including
renaming and moving to another database, and multi-table operations.

The Relational System
Welcome to the part of the book where we start to cover advanced features. The
relational system allows users to do more with phpMyAdmin, as we will see
in the following chapters. This chapter explains how to install the linked-tables
infrastructure, which is a prerequisite for the advanced features, and explains how to
define inter-table relations.

Relational MySQL?
When application developers use PHP and MySQL to build web interfaces or other
data manipulation applications, they usually establish relations between tables,
using the underlying SQL queries – for example, 'get an invoice and all its items' and
'get all books by an author'.

In the first versions of phpMyAdmin, MySQL was storing information about which
table belonged to which database, but the relational data structure (how tables relate
to each other) was not stored into MySQL. Relations were temporarily made by the
applications to generate meaningful results. In other words, the relations were
in our head.

This was considered a shortcoming of MySQL by phpMyAdmin developers and
users, and so the team started to build an infrastructure to support relations. The
infrastructure evolved to support a growing array of special features. We can
describe this infrastructure as metadata (data about data).

phpMyAdmin 2.2.0 already had the bookmarks feature (being able to recall
frequently used queries, as described in Chapter 14), and version 2.3.0 generalized
the metadata system. Subsequent versions built on this facility, the latest addition
being the 2.5.x family with its MIME-based transformations (as described in
Chapter 16).

Relational System

[162]

InnoDB
A new MySQL storage engine (InnoDB) became available during phpMyAdmin's
development. The InnoDB sub-system has its own web page at
http://www.innodb.com.

Since the InnoDB sub-system must be made active by a system administrator, it may
not be available on every MySQL server. Here are the benefits of using the InnoDB
storage engine for a table:

It supports referential integrity based on foreign keys, which are the
keys in a foreign (or reference) table. By contrast, using only phpMyAdmin's
internal relations (discussed later) brings no automatic referential
integrity verification.
InnoDB tables exported definitions containing the defined relations, so they
are easily imported back for better cross-server interoperability.

InnoDB's foreign key feature can effectively replace (for InnoDB tables only) the
part of phpMyAdmin's infrastructure that deals with relations. We will see how
phpMyAdmin interfaces to the InnoDB foreign key system.

The other parts of phpMyAdmin's infrastructure (for
example, bookmarks) have no equivalent in InnoDB
or MySQL, and thus they are still needed to access
the complete phpMyAdmin feature set. However, in
MySQL 5, views are supported and have similarities with
phpMyAdmin's bookmarks.

Linked-Tables Infrastructure
The relational system's infrastructure is stored in tables that follow a predetermined
structure. The data in these tables is generated and maintained by phpMyAdmin on
the basis of our actions from the interface.

Location of the Infrastructure
There are two possible places to store these tables:

In a user's database. Thus every web developer owning a database can
benefit from these features.

•

•

•

Chapter 11

[163]

In a dedicated database, which we call pmadb (phpMyAdmin database). In a
multi-user installation (discussed later), this database may be accessible for a
number of users while keeping the metadata private.

Because this infrastructure does not exist by default, and because phpMyAdmin's
developers want to promote it, the interface displays the following error message for
every database when on the Operations sub-page in the Database view:

This message can be disabled with the following parameter (which by default, is set
to FALSE):

$cfg['PmaNoRelation_DisableWarning'] = TRUE;

Installing Linked-Tables Infrastructure
The previous error message is displayed even if only part of the infrastructure is
lacking. On a fresh installation, of course, all parts are lacking: our database has
not yet heard of phpMyAdmin and needs to be outfitted with this infrastructure.
Following the here link in this message brings up the following explanation:

The message is the same regardless of the current database
(here, dbbook) because the infrastructure is shared
for all our databases and tables (or all users on a
multi-user installation).

As the previous screenshot suggests, the PMA Database is not OK. It's important to
realize that the relational system will work only if two conditions are met:

Proper definitions are present in config.inc.php.
The corresponding tables (and maybe the database) are created.

•

•

•

Relational System

[164]

To create the necessary structure matching our current version of phpMyAdmin,
a command file called create_tables.sql is available in the scripts subdirectory
of the phpMyAdmin installation directory. However, we should not blindly
execute it before understanding the possible choices: multi-user installation or
single-user installation.

Multi-User Installation
In this setup, we will have a distinct database (pmadb) to store the metadata tables,
and our control user will have specific rights to this database. Each user will enter his
or her login name and password, which will be used to access his or her databases.
However, whenever phpMyAdmin itself accesses pmadb to obtain some metadata, it
will use the control user's privileges.

We first ensure that the control user pma has been created as explained in Chapter 2,
and that its definition in config.inc.php is appropriate:

$cfg['Servers'][$i]['controluser'] = 'pma';
$cfg['Servers'][$i]['controlpass'] = 'bingo';

Then we use the scripts/create_tables.sql file to create the phpmyadmin
database, assign proper rights to user pma, and populate the database with all the
necessary tables. Before using this script, look in the scripts directory. There might
be other scripts available for different MySQL versions – for example, phpMyAdmin
2.6.0 has scripts/create_tables_mysql_4_1_2+.sql, which should be used
instead of create_tables.sql for MySQL version 4.1.2 and higher.

Be warned that this script will erase the phpmyadmin
database, if it exists, destroying all metadata about relations.

A possible method to execute this script is to use the technique described in
Chapter 8 (Importing Structure and Data), using the SQL sub-page and the file
selector. For this to work, we must have the create_tables.sql script somewhere
on our workstation. After the creation, the left panel looks like this:

Chapter 11

[165]

It is now time to adjust all the relational-features related parameters in config.inc.
php. Here we use the default values mentioned in the comments inside the file; these
database and table names are the ones that have just been created:

$cfg['Servers'][$i]['pmadb'] = 'phpmyadmin';
$cfg['Servers'][$i]['bookmarktable'] = 'pma_bookmark';
$cfg['Servers'][$i]['relation'] = 'pma_relation';
$cfg['Servers'][$i]['table_info'] = 'pma_table_info';
$cfg['Servers'][$i]['table_coords'] = 'pma_table_coords';
$cfg['Servers'][$i]['pdf_pages'] = 'pma_pdf_pages';
$cfg['Servers'][$i]['column_info'] = 'pma_column_info';
$cfg['Servers'][$i]['history'] = 'pma_history';

As table names are case sensitive, we must use the same
names as the tables created by the installation script. We
are free to change the table names (see the right-hand part
of the configuration directives listed) provided we change
them accordingly in the database.

Each table has a specific function:

pmadb: Defines in which database all the tables are located.
bookmarktable: Contains the bookmarks (explained in Chapter 14).
relation: Defines inter-table relations, as used in many of phpMyAdmin's
features.
table_info: Contains the display field (explained later in this chapter).

•

•

•

•

Relational System

[166]

table_coords and pdf_pages: Contain the metadata necessary for drawing
a schema of the relations in PDF format (explained in Chapter 15).
column_info: Used for column-commenting and MIME-based
transformations (explained in Chapter 16).
history: Contains SQL query history information (explained in Chapter 12).

Between each phpMyAdmin version, the infrastructure may be enhanced. (The
changes are explained in Documentation.html.) This is why phpMyAdmin has
various checks to ascertain the structure of tables. If we know that we are using the
latest structure, $cfg['Servers'][$i]['verbose_check'] can be set to FALSE to
avoid checks, thereby slightly increasing phpMyAdmin's speed.

The installation is now complete; we will test the features in the coming sections and
chapters. We can do a quick check by going back to the Home page: the warning
message should be gone.

Single-User Installation
Even if we are entitled to only one database by the system administrator, we can still
use all the relational features of phpMyAdmin.

In this setup, we will use our normal database (let's assume its name is dbbook) to
store the metadata tables and will define our own login name (marc) as the control
user in config.inc.php:

$cfg['Servers'][$i]['controluser'] = 'marc';
$cfg['Servers'][$i]['controlpass'] = 'bingo';

The next step is to modify a local copy of the scripts/create_tables.sql file to
populate our database with all the needed tables. They will have the prefix pma_ to
make them easily recognizable. (See also the remark in the Multi-User Installation
section about other scripts that may be available in the scripts directory.)

Be warned that this script will erase the special tables, if
they exist, destroying all metadata about relations.

The modification we have to do is to remove the following lines:

DROP DATABASE `phpmyadmin`;
CREATE DATABASE `phpmyadmin`;

•

•

•

Chapter 11

[167]

USE phpmyadmin;

GRANT SELECT, INSERT, DELETE, UPDATE ON `phpmyadmin`.* TO
 'pma'@localhost;

This is done because we won't be using the phpmyadmin database or the pma
control user.

We are now ready to execute the script. There are two ways of doing this:

Since we already have the script in our editor, we can just copy the lines and
paste them in the query box of the SQL sub-page.
Another way is to use the technique shown in Chapter 8 (Importing Structure
and Data), with the SQL sub-page and the file selector. We select the create_
tables.sql script that we just modified.

After the creation, the left panel shows us the special pma_ tables along with our
normal tables:

The last step is to adjust all the parameters in config.inc.php that relate to
relational features. Except for the database name in the pmadb parameter, we use the
default values mentioned in the comments inside the file:

$cfg['Servers'][$i]['pmadb'] = 'dbbook';

The Relation View
After the installation of the linked-tables infrastructure, there are now more options
available in the Database view and the Table view. We will now examine a new link
in the Table view: Relation view. This view is used to:

•

•

Relational System

[168]

Define the relations of the current table to other tables
Choose the display field

Since our goal here is to create a relation between the books table (which contains
the author ID) and the authors table (which describes each author by an ID), we start
on the Table view for the books table and click the Relation view link.

Internal phpMyAdmin Relations
Since the books table is in MyISAM format, we see the following screen (otherwise,
the display would be different, as explained in the InnoDB Relations section later):

This screen allows us to create Internal relations (stored in the pma_relation table),
because MySQL itself does not have any relational notion for MyISAM tables.
The double-dash (--) characters indicate that there are no relations (links) to any
foreign table.

Defining the Relation
We can relate each field of the books table to a field in another table (or in the same
table, because self-referencing relations are sometimes necessary). The interface finds
the unique and non-unique keys in all tables of the same database and presents the

•

•

Chapter 11

[169]

keys in drop-down lists. The appropriate choice here is to select for the author_id
field the corresponding author_id field from the authors table. This is also called
defining the foreign key.

We then click Save, and the definition is saved in phpMyAdmin's infrastructure. To
remove the relation, we just come back to the screen, select the double-dash choice,
and hit Save.

Defining the Display Field
The primary key of our authors table is the author_id, which is a unique number
that we made up just for key purposes. Another field in our table represents the
authors: the name. It would be interesting to see the author's name as an informative
description of each row of the books table. This is the purpose of the display field.
We should normally define a display field for each table that participates in a relation
as a foreign table.

We will see how this information is displayed in the Benefits of the Defined Relations
section. We now go to the Relation view for the authors table (which is the foreign
table in this case) and specify the display field. We choose author_name as the
display field and click Save:

Relational System

[170]

phpMyAdmin offers to define only one display field for a
table, and this field is used in all the relations where this
table is used as a foreign table.

The definition of this relation is now done. Note that, although we did not relate
any of the fields in the authors table to another table, it can be done. For example,
we could have a country code in this table and could create a relation to the country
code of a country table.

We will discuss the benefits of having defined this relation in a later section, but first,
we will see what happens if our tables are in the InnoDB storage engine.

InnoDB Relations
The InnoDB storage engine offers us a foreign key system. To try it, we will first
switch our books and authors tables to the InnoDB storage engine. We can do this
from the Operations sub-page in the Table view. We start by doing this for the
authors table:

Chapter 11

[171]

A problem might arise when changing the storage engine of books table to InnoDB.
We have a full-text index in this table, and some versions of MySQL do not support
it for the InnoDB engine. We have to remove the full-text index if we receive the
following error message:

To get rid of this error message, we go back to Structure for the books table and
remove the full-text index on the description field. While we are on this screen,
let's also remove the combined index we created on author_id and language. This
is because we want to see the consequences of a missing index later in this chapter.
At this point we are able to switch the books table to InnoDB.

The foreign key system in InnoDB maintains integrity between the related tables, so
we cannot add a non-existent author ID to the books table. In addition, actions are
programmable when DELETE or UPDATE operations are performed on the master table
(in our case, books).

Opening the books table and entering the Relation view now displays a
different page:

Relational System

[172]

This page tells us that:

We have an internal relation defined for author_id to the authors table.
We don't yet have any InnoDB relations defined.
We will be able to remove the internal relation, when the same relation has
been defined in InnoDB. This message can be seen when moving the mouse
over the small bulb light. In fact, phpMyAdmin advises us that the internal
relation is not necessary when it also exists in InnoDB, so it would be better
to remove it.
ON DELETE and ON UPDATE options are available for InnoDB relations.

The page might also tell us that our MySQL version is not up to date. (It needs to
be 4.0.13 or later.) If we have a version prior to 4.0.13, we won't be able to remove
a relation defined in InnoDB, due to a lack of support for the ALTER TABLE … DROP
FOREIGN KEY statement. This is why phpMyAdmin could be giving us this friendly
(and crucial!) advice.

In the possible choices for the related key, we see the keys defined in all InnoDB
tables of the same database. (Creating a cross-database relation is currently not
supported in phpMyAdmin.) We even see the keys defined in the current table,
because self-referring relations are possible. We now remove the internal relation
for the author_id field and hit Save. We would like to add an InnoDB-type relation
for the author_id field, but we cannot – we see the No index defined! message on
this line. This is because foreign key definitions in InnoDB can be done only if both

•

•

•

•

Chapter 11

[173]

fields are defined as indexes. (There are also other constraints explained in the
MySQL manual.)

Thus, we come back to the Structure page for the books table and add an ordinary
(non-unique) index to the author_id field producing:

In the Relation view, we can again try to add the relation we wanted – it works
this time!

We can also set some actions with the ON DELETE and ON UPDATE options. For
example, ON DELETE CASCADE would make MySQL automatically delete all
rows in the related (foreign) table when the corresponding row is deleted from the
parent table. This would be useful, for example, when the parent table is invoices
and the foreign table is invoice-items.

If we have not done so already, we should define the
'display field' for the authors table, as explained in the
Internal phpMyAdmin Relations section.

In the current phpMyAdmin version (2.8.2), we cannot see tables from a different
database in order to define a relation to them.

InnoDB Tables without Linked-Tables Infrastructure
Starting with phpMyAdmin 2.6.0, we see the Relation View link on the Structure
page of a InnoDB table even though the linked-tables infrastructure is not installed.
This brings us to a screen where we can define the foreign keys – here for the
books table.

Note that, if we choose this way, the 'display field' for the linked table (authors here)
cannot be defined, since it belongs to the phpMyAdmin's infrastructure, so we would
lose one of the benefits (seeing the foreign key's associated description).

Relational System

[174]

Benefits of the Defined Relations
In this section we will look at the benefits that we can currently test; other benefits
will be described in Chapter 13 (The Multi-Table Query Generator) and Chapter 15
(System Documentation). Some other benefits of the linked-tables infrastructure will
appear in Chapter 14 (Bookmarks) and Chapter 16 (MIME-Based Transformations).

These benefits are available for both internal and InnoDB relations.

Foreign Key Information
Let's browse the books table. We see that the related key (author_id) is now a link.

Moving the mouse pointer over any author_id value reveals the author's name
(as defined by the display field of the authors table):

Chapter 11

[175]

Clicking on the author_id brings us to the relevant table, authors, for this
specific author:

The Drop-Down List of Foreign Keys
Going back to the books table, in Insert mode (or in Edit mode), we now see a
drop-down list of the possible keys for each field that has a relation defined. The list
contains the keys and the description (display field) in both orders: key to display
field, and display field to key. This enables us to use the keyboard and type the first
letter of either the key or the display field:

Only the key (in this case 1) will be stored in the books
table. The display field is only there to assist us.

By default, this drop-down list will appear if there are a maximum of 100 rows in the
foreign table. This is controlled by the following parameter:

$cfg['ForeignKeyMaxLimit'] = 100;

For foreign tables bigger than that, a distinct window appears: the browseable
foreign-table window.

Relational System

[176]

We might prefer to see information differently in the drop-down list. Here, John
Smith is the content and 1 is the id. The default display is controlled by

$cfg['ForeignKeyDropdownOrder'] = array('content-id', 'id-content');

We can use one or both of the strings content-id and id-content in the defining
array, in the order we prefer. Thus, defining $cfg['ForeignKeyDropdownOrder'] to
array('id-content') would produce:

The Browseable Foreign-Table Window
Our current authors tables have very few entries – two in fact. Thus, to illustrate
this mechanism we will set the $cfg['ForeignKeyMaxLimit'] to an artificially low
number, 1. Now in Insert mode for the books table, we see a small table-shaped icon
for author_id, as shown in the screenshot that follows:

This icon opens another window presenting the values of the table authors and
a Search input field. On the left, the values are sorted by key value (here, the
author_id column), and on the right, they are sorted by description. We have added
a third author to better see the difference in sorting:

Chapter 11

[177]

Choosing one of the values (by clicking either a key value or a description) closes this
window and brings the value back to the software_id column.

Referential Integrity Checks
We discussed the Operations sub-page and its Table maintenance section in
Chapter 10. If we have defined an internal relation for the authors table (a non-InnoDB
table), a new choice appears for the books table: Check referential integrity:

A link (here, author_id -> authors.author_id) appears for each defined relation, and
clicking it starts a verification. For each row, the presence of the corresponding key in
the foreign table is verified, and any errors are reported. If the resulting page reports
zero rows, this is good news!

Relational System

[178]

This operation exists, because for non-InnoDB tables, MySQL does not enforce
referential integrity, and neither does phpMyAdmin. It is perfectly possible, for
example, to import data in the books table with invalid values for author_id.

Automatic Updates of Metadata
phpMyAdmin keeps the metadata for internal relations synchronized with every
change that is made to the tables via phpMyAdmin. For example, renaming a column
that is part of a relation would make phpMyAdmin rename it also in the metadata
for the relation. The same thing happens when a column or a table is dropped.

Metadata should be manually maintained in case a change
in the structure is done from outside phpMyAdmin.

Column-Commenting
Before MySQL 4.1, the MySQL structure itself does not support adding comments to a
column. Thanks to phpMyAdmin's metadata, we can nevertheless comment columns.
Since MySQL 4.1, native column commenting is supported. The good news is that for
any MySQL version, column commenting via phpMyAdmin is always accessed via
the Structure page by editing each field's structure. In the following example, we need
to comment three columns, so we choose them and click the pencil icon:

Chapter 11

[179]

To obtain the next panel as seen here, we are working in vertical mode by setting
$cfg['DefaultPropDisplay'] to 'vertical'. We enter the following comments:

isbn: book number
page_count: approximate
author_id: cf authors table

Then we click Save.

These comments appear at various places – for example, in the export file (see
Chapter 7), on the PDF relational schema (see Chapter 15), and in the Browse mode:

If we do not want the comments to appear in Browse mode, we can set $cfg['ShowB
rowseComments'] to FALSE. (It is TRUE by default.)

Column comments also appear as a tool tip in the Structure page, and column names
are underlined with dashes. To deactivate this behavior, we can set $cfg['ShowProp
ertyComments'] to FALSE. (This one is also TRUE by default.)

•

•

•

Relational System

[180]

Automatic Migration
Whenever phpMyAdmin detects that column comments were stored in its metadata
and that we are using MySQL 4.1.2 or a later version, it automatically migrates these
column comments to the native MySQL column comments.

Summary
In this chapter, we covered the installation of the necessary infrastructure for keeping
special metadata (data about tables), and learned how to define relations between
both InnoDB and non-InnoDB tables. We also examined the modified behaviour of
phpMyAdmin when relations are present, foreign keys, getting information from the
table, and column-commenting.

Entering SQL Commands
This chapter explains how we can enter our own SQL commands (queries) into
phpMyAdmin and how we can keep a history of those queries.

The SQL Query Box
phpMyAdmin allows us to accomplish many database operations via its graphical
interface, but sometimes we have to rely on SQL query input to achieve complex
operations. Here are examples of complex queries:

select department, avg(salary) from employees group by department
having years_experience > 10;
select from_days(to_days(curdate()) +30);

The query box is available from a number of places within phpMyAdmin.

The Database View
We encounter our first query box when going to the SQL menu available in the
Database view. This box is simple: we type in it some valid (hopefully) MySQL
statement and click Go.

For a default query to appear in this box, we can set it with the $cfg['DefaultQu
eryDatabase'] configuration directive, which is empty by default. We could put
a query like SHOW TABLES FROM %d in this directive. The %d parameter in this query
would be replaced by the current database name, resulting in SHOW TABLES FROM
'dbbook' in the query box.

Entering SQL Commands

[182]

The Table View
A slightly different box is available in the Table view from the SQL menu.

The lower part has bookmark-related choices (explained in Chapter 14). There is
also a Fields selector and an Insert button on the right. The box already has a
default query.

This query SELECT * FROM 'books' WHERE 1 is generated from the $cfg['DefaultQu
eryTable'] configuration directive, which contains SELECT * FROM %t WHERE 1. Here,
the %t is replaced by the current table name. Another placeholder available in $cfg
['DefaultQueryTable'] is %f, which would be replaced by the complete field list
of this table, thus producing the query: SELECT 'isbn', 'title', 'page_count',
'author_id', 'language', 'description', 'cover_photo', 'genre' FROM
'books' WHERE 1.

Chapter 12

[183]

WHERE 1 is a condition that is always true, so the query can be executed as is. We can
replace 1 with the condition we want, or we can type a completely different query.

The Fields Selector
The Fields selector is a way to speed up query generation. By choosing a field and
clicking on the arrows <<, this field name is copied at the current cursor position in
the query box. Here we select the author_id field, remove the digit 1, and click <<.
Then we add the condition = 2.

The Show this query here again option (checked by default) means that the query
will stay in the box after its execution if we are still on the same page. This can be
better seen for a query like an UPDATE or DELETE, which affects a table but does not
produce a separate results page.

Clicking Into the Query Box
The default value of the $cfg['TextareaAutoSelect'] configuration directive is
TRUE. This is why the first click into this box selects all its contents. (This is a way to
quickly copy the contents elsewhere or delete them from the box.) The next click puts
the cursor at the click position. If the directive is set to FALSE, the first click does not
select all the contents of this text area.

The Query Window
In Chapter 3, we discussed the purpose of this window and the procedure for
changing some parameters (like dimension). This window can be easily opened from
the left panel using the SQL icon or the Query window link, and is very convenient
for entering a query and testing it:

Entering SQL Commands

[184]

The following shows the query window that appears over the right panel:

It contains the same Fields selector and << button as that used in a Table view context.

This distinct query window only appears if $cfg['QueryFrameJS'] is set to TRUE;
we need to use a JavaScript-enabled browser. If this is set to FALSE, following the
Query window link will only jump to the normal SQL page with the query box.

Query Window Options
The SQL tab is the default active tab in this window. This comes from the
configuration directive $cfg['QueryWindowDefTab'], which contains sql by default.

Chapter 12

[185]

If we want another tab to be the default active tab, we can replace sql with files or
history. Another value, full, shows the contents of all the three tabs at once.

In the query window, we see a checkbox for the Do not overwrite this query from
outside the window choice. Normally this is not checked, and the changes we make
while navigating generating queries are reflected in the query window. (This is
called synchronization.) For example, choosing a different database or table from
the left or right panel would update the query window accordingly. But if we start
to type a query directly in this window, the checkbox will get checked in order to
protect its contents and remove synchronization. This way, the query composed here
will be locked and protected.

JavaScript-Based SQL History
This feature collects all the successful SQL queries we execute and modifies the
Query window to make them available. If we close the window, they will be lost.
This default type of history is temporary, since $cfg['QueryHistoryDB'] is set to
FALSE by default.

JavaScript-based history works in Opera, Mozilla-based browsers, and Internet
Explorer.

Database-Based SQL History (Permanent)
Since we installed the linked-tables infrastructure (see Chapter 11), a more powerful
history mechanism is available and is triggered by setting $cfg['QueryHistoryDB']
to TRUE.

After we try some queries from the query box (the one located in the query window)
a history is built:

We see (in the reverse order) the last successful queries and the database on which
they were made. Only the queries typed from the query box are kept in this history,
not queries generated by phpMyAdmin itself (for example, by clicking on Browse).

Entering SQL Commands

[186]

They are clickable for immediate execution, and the Edit icon is available to insert a
recorded query into the query box for editing.

How many queries will be kept is controlled by $cfg['QueryHistoryMax'], which
is set to 25 by default. This limit is not kept for performance reasons but as a practical
limit so as to achieve a visually unencumbered view. Extra queries are eliminated at
login time in a process traditionally called garbage collection. The queries are stored
in the table configured in $cfg['Servers'][$i]['history'].

Editing Queries in the Query Window
On the results page of a successful query, a header containing the executed
query appears:

Clicking Edit opens the Query window's SQL tab, with this query ready to be
modified. This happens because of the default setting for this parameter:

$cfg['EditInWindow'] = TRUE;

When it is set to FALSE, a click on Edit would not open the query window; instead,
the query would appear inside the query box of the SQL sub-page.

Multi-Statement Queries
In PHP/MySQL programming, we can only send one query at a time using the
mysql_query() function call. phpMyAdmin allows for sending many queries in one
transmission, using a semicolon as a separator. Suppose we type the following query
in the query box:

insert into authors values (100,'Paul Smith','111-2222');
insert into authors values (101,'Melanie Smith','222-3333');
update authors set phone='444-5555' where author_name like '%Smith%';

Chapter 12

[187]

We will receive the following results screen:

We see the number of affected rows through comments because
$cfg['VerboseMultiSubmit'] is set to TRUE.

Let's send the same list of queries again and watch the results:

It is normal to receive a Duplicate entry error: the value 100 already exists. But what
happens to the next INSERT statement? Execution stops at the first error because
$cfg['IgnoreMultiSubmitErrors'] is set to FALSE, telling phpMyAdmin not to
ignore errors in multiple statements. If it is set to TRUE, the program successively
tries all the statements, and we get:

Entering SQL Commands

[188]

This feature would not work as expected if we tried more than one SELECT
statement. We would see only the results of the last SELECT statment.

Pretty Printing (Syntax-Highlighting)
By default, phpMyAdmin parses and highlights the various elements of any
MySQL statement it processes. This is controlled by $cfg['SQP']['fmtType'],
which is set to 'html' by default. This mode uses a specific color for each different
element (a reserved word, a variable, a comment, and so on) as described in the
$cfg['SQP']['fmtColor'] array located in the theme-specific layout.inc.php file.
The default values are:

$cfg['SQP']['fmtColor'] = array(
 'comment' => '#808000',

Chapter 12

[189]

 'comment_mysql' => '',
 'comment_ansi' => '',
 'comment_c' => '',
 'digit' => '',
 'digit_hex' => 'teal',
 'digit_integer' => 'teal',
 'digit_float' => 'aqua',
 'punct' => 'fuchsia',
 'alpha' => '',
 'alpha_columnType' => '#FF9900',
 'alpha_columnAttrib' => '#0000FF',
 'alpha_reservedWord' => '#990099',
 'alpha_functionName' => '#FF0000',
 'alpha_identifier' => 'black',
 'alpha_variable' => '#800000',
 'quote' => '#008000',
 'quote_double' => '',
 'quote_single' => '',
 'quote_backtick' => ''
);

In the previous examples, fmtType was set to 'text' because this mode is more
legible in a book. This mode inserts line breaks at logical points inside a MySQL
statement, but there is no color involved. With fmtType set to 'html', phpMyAdmin
would report the SQL statements as:

Setting fmtType to 'none' removes every kind of formatting, leaving our
syntax intact:

Entering SQL Commands

[190]

The multi-dimensional arrays used for holding some
parameters in the configuration file reflect a programming
style adopted by the phpMyAdmin development team. This
avoids having very long parameter names.

Views
MySQL 5.0 introduced support for named, updatable views. phpMyAdmin's current
version partially supports views.

Creating a View
To create a view, we use the query box to manually enter the appropriate statement.
Let's enter the following statement and click Go:

CREATE VIEW books_authors AS
SELECT books.isbn, books.title, authors.author_name FROM books
LEFT JOIN authors USING (author_id)

At this point, the view has been created, even if the left panel has not been updated
to reflect this fact. If we refresh our browser's page and then access the dbbook
database, we see:

In the left panel, there is a different symbol next to the books_authors view; it can
be used to browse this view. In the right panel we see the newly created view's
information. The number of records for the view has been computed, and View is
indicated in the Type column. There is no collation or size associated with a view.

Chapter 12

[191]

Operations on Views
The previous step was done manually; other operations on views are handled by
phpMyAdmin's interface. Let's browse this view:

We notice that, in the generated SQL query, we do not see our original CREATE VIEW
statement. The reason is that we are selecting from the view, and this is done with
a SELECT statement. However, exporting the view's structure would display how
MySQL internally stored our view:

CREATE ALGORITHM=UNDEFINED DEFINER='marc'@'%' SQL SECURITY DEFINER
VIEW 'books_authors' AS
select 'books'.'isbn' AS 'isbn',
'books'.'title' AS 'title',
'authors'.'author_name' AS 'author_name'
from ('books' left join 'authors' on(('books'.'author_id' =
'authors'.'author_id')));

The menu is more limited, displaying the options that make sense for a view. When
needed, phpMyAdmin generates the appropriate syntax for handling views. For
example, a click on Drop would produce:

Entering SQL Commands

[192]

Do you really want to: DROP VIEW 'books_authors'

At this point, we can confirm this view's deletion.

The SQL Validator
Each time phpMyAdmin transmits a query, the MySQL server interprets it and
provides feedback. The syntax of the query must follow MySQL rules, which are not
the same as standard SQL. However, conforming to standard SQL ensures that our
queries may be used on other SQL implementations.

A free external service, the Mimer SQL Validator, is offered. It validates our
query according to Core SQL-99 rules and generates a report. The Validator is
available directly from phpMyAdmin, and its home page is located at
http://developer.mimer.com/validator/index.htm.

This service stores anonymously on their server the queries
it receives, for statistical purposes. When storing the
queries, it replaces database, table, and columns names with
generic names. Strings and numbers that are part of the
query are replaced with generic values so as to protect the
original information.

System Requirements
This Validator is available as a SOAP service. Our PHP server must have XML, PCRE,
and PEAR support. We need some PEAR modules too. The following command
(executed on the server by the system administrator) installs the modules we need:

pear install Net_Socket Net_URL HTTP_Request Mail_Mime Net_DIME SOAP

If we have problems with this command due to some of the modules being in a
beta state, we can execute the following command, which installs SOAP and other
dependent modules:

pear -d preferred_state=beta install -a SOAP

Making the Validator Available
Some parameters must be configured in config.inc.php. Setting $cfg['SQLQuery'
]['Validate'] to TRUE enables the Validate SQL link.

Chapter 12

[193]

We also have to enable the Validator itself (as other validators might be available on
future phpMyAdmin versions). This is done by setting $cfg['SQLValidator']['us
e'] to TRUE.

The Validator is accessed with an anonymous Validator account by default, as
configured by the following:

$cfg['SQLValidator']['username'] = '';
$cfg['SQLValidator']['password'] = '';

If the company has provided us with an account, we can instead use that account
information here.

Validator Results
There are two kinds of reports returned by the Validator: one if the query conforms
to the standard, and another if it does not.

Standard-Conforming Queries
We will try a simple query: select * from books. We enter this query in the query
box as usual and send it. On the results page, we now see an additional link:
Validate SQL.:

Clicking on Validate SQL produces the following report:

Entering SQL Commands

[194]

We have the option of clicking Skip Validate SQL to see our original query.

Non Standard-Conforming Queries
Let's try this query, which works correctly in MySQL: select * from books where
language = 'en' Sending it to the Validator produces the following report:

Each time the Validator finds a problem, it adds a message like {error: 1} at the
point of error and a footnote in the report. This time, the language column name is
non-standard, so the Validator tells us that it was expecting an identifier at this point.

Chapter 12

[195]

Another case is that of the backquotes. If we just click on Browse for thebooks
table, phpMyAdmin generates select * from 'books', enclosing the table name
with backquotes. This is the MySQL way of protecting identifiers, which might
contain special characters, like spaces or international characters, or reserved words.
However, sending this query to the Validator shows us that the backquotes do not
conform to standard SQL. We even get two errors – one for each backquote:

Summary
In this chapter, we took a look at the purpose of query boxes and where they can be
found. We also looked at query window options, multi-statement queries, how to
use the field selector, how to use the SQL Validator, how to get a history of the typed
commands, and how to handle views.

The Multi-Table Query
Generator

The Search pages in the Database or Table view are intended for single-table
lookups. This chapter covers the multi-table Query by example (QBE) feature
available in the Database view.

Many phpMyAdmin users work in the Table view, table by table, and thus tend
to overlook the multi-table query generator, which is a wonderful feature for fine-
tuning queries. To open the page for this feature, we go to the Database view for a for afor a
specific database (the query generator supports working on only one database at a
time) and click on Query.

The query generator is useful not only in multi-table situations but also for a single
table. It enables us to specify multiple criteria for a column, a feature that the Search
page in the Table view does not possess.

The examples in this chapter assume that a single-user
installation of the linked-tables infrastructure has been
made (see Chapter 11) thus producing more tables in the
dbbook database.

The screenshot overleaf shows the initial QBE page. It contains the following elements:

Criteria columns
An interface to add criteria rows
An interface to add criteria columns
A table selector
The query area
Buttons to update or to execute the query

•
•
•
•
•
•

Multi-Table Query Generator

[198]

Choosing Tables
The initial selection includes all the tables. In this example, we assume that the
linked-table infrastructure has been installed into the dbbook database. (See the
section, Single-User Installation, in Chapter 11.) Consequently, the Field selector
contains a great number of fields. For our example, we will work only with the
authors and books tables:

Chapter 13

[199]

We then click Update Query. This refreshes the screen and reduces the number of
fields available in the Field selector. We can always change the table choice later
using our browser's mechanism for multiple choices in drop-down menus (usually
control-click).

Column Criteria
Three criteria columns are provided by default. This section discusses the options
we have for editing their criteria. These include options for selecting fields, sorting
individual columns, entering conditions for individual columns, and so on.

Field Selector: Single-Column or All Columns
The Field selector contains all individual columns for the selected tables, plus a
special choice ending with an asterisk (*) for each table, which means 'all the fields'
are selected:

To display all the fields in the authors table, we choose 'authors'.* and check the
Show checkbox, without entering anything in the Sort and Criteria boxes. In our
case, we select 'authors'.'author_name', since we want to enter some criteria for the
author's name.

Sorts
For each selected individual column, we can specify a sort (in Ascending or
Descending order) or let this line remain intact (meaning no sort). If we choose
more than one sorted column, the sort will be done with a priority from left to right.

Multi-Table Query Generator

[200]

When we ask for a column to be sorted, we normally check
the Show checkbox, but this is not necessary.

Showing a Column
We check the Show checkbox so that we can see the column in the results.
Sometimes, we may just want to apply a criterion on a column and not include it
in the resulting page. Here we add the phone field, ask for a sort on it, and choose
to show both the name and phone number. We also ask for a sort on the name in
ascending order. The sort will be done first by name, and then by phone number if
the names are identical. This is because the name is in a column criterion to the left of
the phone column and thus has a higher priority:

Updating the Query
At any point, we can click the Update Query button to see the progress of our generated
query. We surely have to click it at least once before executing the query. For now, let's
click it and see the query generated in the query area. In the following examples, we will
click Update Query after each modification:

Chapter 13

[201]

We have selected two tables, but have not yet chosen any columns from the books
table, so this table is not mentioned in the generated query.

Criteria
In the Criteria box, line, we can enter a condition (respecting the SQL WHERE clause's
syntax) for each of the corresponding columns. By default, we have two criteria
rows. To find all authors with Smith in their name, we use a LIKE criterion – LIKE
'%SMITH%' – and click Update Query:

Multi-Table Query Generator

[202]

We have another line available to enter an additional criterion. Let's say we want
to find the author 'Maria Sunshine' as well. This time, we use an = condition. The
two condition rows will be joined by the OR operator selected by default from the left
side of the interface:

Chapter 13

[203]

To better demonstrate that the OR operator links both the criteria rows, let's now add
a condition, LIKE '%8%', on the phone number:

Multi-Table Query Generator

[204]

By examining the positioning of the AND and OR operators, we can see that the first
conditions are linked by an AND (because AND is chosen under the author_name
column) and that the second row of conditions is linked to the rest by the OR
operator. The condition we just added (LIKE '%8%') is not meant to find anyone,
since in an exercise in Chapter 12, we changed the phone number of all authors with
name 'Smith' to '444-5555'.

If we want another criterion on the same column, we just add a criteria row.

Adjusting the Number of Criteria Rows
The number of criteria rows can be changed in two ways. First, we can select the Ins
checkbox under Criteria to add one criteria row (after clicking on Update Query):

Chapter 13

[205]

We can also use the Add/Delete Criteria Row dialog. Here we choose to add
two rows:

This produces the following:

We can also remove criteria rows. This can be done by choosing negative numbers in
the Add/Delete Criteria Row dialog or by ticking the Del checkbox beside the rows
we want to remove. Let's remove the two rows we just added since we don't need
them now:

Multi-Table Query Generator

[206]

The Update Query button refreshes the page with the specified adjustment.

Adjusting the Number of Criteria Columns
We can add or delete columns by using a similar mechanism: the Ins or Del
checkboxes under each column, or the Add/Delete Field Columns dialog. We
already had one unused column. Here we have added one column using the Ins
checkbox located under the unused column (this time we will need it):

Chapter 13

[207]

Automatic Joins
Let's now add some fields from our books table and see what happens:

phpMyAdmin uses its knowledge of the relations defined between the tables to
generate a left join on the common author_id key field. A shortcoming of the current
version is that only the internal relations are examined, not the InnoDB relations.

There may be more than two tables involved in a join.

Executing the Query
Clicking the Submit Query button sends the query for execution. In the current
phpMyAdmin version (2.8.2), there is no easy way (except by using the browser's
Back button) to come back to the query generation page after we have submitted our
query. The next chapter (Bookmarks) discusses how to save the generated query for
later execution.

Multi-Table Query Generator

[208]

Summary
In this chapter we have covered various aspects such as opening the query generator,
choosing tables, entering column criteria, sorting and showing columns, and altering
the number of criteria rows or columns. We also saw how to use the AND and OR
operators to define relations between rows and columns, and how to use automatic
joins between tables.

Bookmarks
This chapter covers one of the linked-tables features: query bookmarks. Being able
to label queries and recall them by label can be a real time saver. In Chapter 12,
we learned about the SQL history feature, which automatically stores queries
(temporarily or permanently).

Bookmarks are queries that are:

Stored permanently
Viewable
Erasable
Related to one database
Recorded only as a consequence of a user's wish
Labelled
Private by default (only available to the user creating them), but
possibly public

A bookmark can also have a variable part, as explained in the Passing a Parameter
Value to a Bookmark section later in this chapter.

There is no bookmark sub-page to manage bookmarks. Instead, the various
actions on bookmarks are available on specific pages such as results pages or query
box pages.

Creating a Bookmark after a Successful
Query
Initial bookmark creation is made possible by the Bookmark this SQL-query button.
This button appears only after execution of a query that generates results (when at

•

•

•

•

•

•

•

Bookmarks

[210]

least one row is found), so this method for creating bookmarks only stores SELECT
statements. For example, a complex query produced by the multi-table query
generator (as seen in Chapter 13) could be stored as a bookmark in this way,
provided it finds some results.

Let's see an example. In the Search page for the books table, we enter the search
values as shown in the following screenshot:

The results page has a bookmark dialog. We have to enter only a label for
this bookmark and click Bookmark this SQL-query to save this query as a
bookmark. Bookmarks are saved in the table defined by
$cfg['Servers'][$i]['bookmarktable'].

Chapter 14

[211]

This bookmark dialog can be seen on any page that contains results. As a test,
we could just click Browse for a table to get results and then store this query as a
bookmark. However, it does not make much sense to store (in a bookmark) a query
that can easily be made with one click.

Storing a Bookmark before Sending a
Query
Sometimes we may want to store a bookmark even if a query does not find any
results. This may be the case if the matching data is not yet present or if the query
is not a SELECT statement. To achieve this, we have the Bookmark this SQL-query
dialog available as follows:

The Table view: on each page where a query box is displayed
The query window: the SQL tab

We now go to the SQL sub-page of the books table, enter a query, and directly put
the books in French bookmark label in the Bookmark this SQL query field. If this
bookmark label was previously used, a new bookmark with the same name will be
created, unless we select the Replace existing bookmark of same name checkbox.
Bookmarks carry an identifying number as well as a user-chosen label.

•

•

Bookmarks

[212]

Then we click Go, which executes and stores the query as a bookmark. It does not
matter if the query finds nothing:

This is how we can generate bookmarks for non-SELECT queries like UPDATE, DELETE,
CREATE TABLE, and so on.

This technique can also be used for a SELECT statement
that either returns or does not return results.

Chapter 14

[213]

Multi-Query Bookmarks
A single bookmark can also store more than one query (separated by semicolon).
This is mostly useful for non-SELECT queries. Stacking a lot of SELECT statements
would not yield the intended result because we would only see the data fetched by
the last SELECT statement.

Recalling from the Bookmarks List
These bookmarks can now be easily found on the following pages:

The Table view: Structure or SQL sub-page of any table from dbbook
The query window: the SQL-History tab
While browsing the pma_bookmark table (See the Executing Bookmarks from
the pma_bookmark Table section later)
The Database view: SQL sub-page of the dbbook database

Bookmarks are numbered by the system. Three choices are available when recalling a
bookmark: Submit, View only, and Delete (Submit being the default).

Bookmark Execution
Choosing the first bookmark and hitting Go executes the stored query and displays
its results. The page resulting from a bookmark execution does not have another
dialog to create a bookmark, as this would be superfluous.

•
•
•

•

Bookmarks

[214]

The results we get are not necessarily the same as when we
created the bookmark. They reflect the current contents of
the database. Only the query is stored as a bookmark.

Bookmark Manipulation
Sometimes we may just want to ascertain the contents of a bookmark. Here we
choose the second bookmark and select View only:

The query will only be displayed. We could then click Edit and rework its contents.
By doing so, we would be editing a copy of the original bookmarked query. To
keep this new edited query, we can save it as a bookmark. Again, this will create
another bookmark even if we choose the same bookmark label, unless we explicitly
ask for the original bookmark to be replaced.

A bookmark can be erased with the Delete option. There is no confirmation dialog
to confirm the deletion of the bookmark. Deletion is followed only by a message
stating: The bookmark has been deleted.

Public Bookmarks
All bookmarks we create are private by default. When a bookmark is created, the
user we are logged in as is stored with the bookmark. Suppose we choose Let every
user access this bookmark as shown in the following screenshot:

Chapter 14

[215]

This would have the following effect:

All users that have access to the same database (the current one) will have
access to the bookmark.
The users' ability to see meaningful results from the bookmark depends on
the privileges they have on the tables referenced in the bookmark.
The users will be able to delete the bookmark.

The Default Initial Query for a Table
In the previous examples, we chose bookmark labels according to our preferences,
but by convention, if a bookmark has the same name as a table, it will be executed
when Browse is clicked for this table. Thus, instead of seeing the normal Browse
results of this table, we'll see the bookmark's results.

Suppose we are interested in viewing (by default, in the Browse mode) the books
with a page count lower than 300. We first generate the appropriate query, which
can be done easily from the Search page, and then we use books as a label on the
results page:

•

•

•

Bookmarks

[216]

Bookmark Parameters
If we look again at the first bookmark we created (finding all books for author 1), we
realize that, although useful, it was limited to always finding the same author.

A special query syntax enables the passing of parameters to bookmarks. This syntax
uses the fact that SQL comments enclosed within /* and */ are ignored by MySQL.
If the /*[VARIABLE]*/ construct exists somewhere in the query, it will be expanded
at execution time with the value provided when recalling the bookmark.

Creating a Parameterized Bookmark
Let's say we want to find all books for a given author when we don't know the
author's name. We first enter the following query:

SELECT authors.author_name, authors.author_id, books.title

FROM books, authors

WHERE books.author_id = authors.author_id

/* AND authors.author_name

 LIKE '%[VARIABLE]%' */

The part between the comments characters (/* */) will be expanded later, and the
tags removed:

We label it and click Go. The first execution of the query just stores the bookmark.

Chapter 14

[217]

In this example, we have two conditions in the WHERE clause, of which one contains
the special syntax. If our only criterion in the WHERE clause needed a parameter, we
could use a syntax like WHERE 1 /* and author_id = [VARIABLE] */.

Passing a Parameter Value to a Bookmark
To test the bookmark, we recall it as usual and enter a value in the Variable field:

When we click Go, we see the expanded query and author Smith's books:

Bookmarks

[218]

Executing Bookmarks from the
pma_bookmark Table
This feature is only available to users who have access to the pma_bookmark table.
This is the default name given when the linked-tables infrastructure is installed.
In a multi-user installation, this table is usually located in a database invisible to
unprivileged users. Browsing this table displays a new Execute bookmarked query
button, which triggers the execution of the query:

Seeing the text of the query while browsing this table is possible if $cfg['ShowBlob']
is set to TRUE. Alternatively, we could click the pencil icon to open the Edit page for a
specific row so that we can see the query's complete text.

Summary
In this chapter, we saw how to record bookmarks (after or before sending a query),
how to manipulate them, and how some bookmarks can be made public. We learned
about the default initial query for Browse mode. We also covered passing parameters
to bookmarks and executing bookmarks directly from the pma_bookmark table.

System Documentation
Producing and maintaining good documentation about data structure is crucial for a
project's success, especially when it's a team project. Fortunately, phpMyAdmin has
features that take care of this. When phpMyAdmin generates results, there is always
a Print view link that can be used to generate a printable report of the data. The Print
view feature can also be used to produce basic documentation, and this is done in
two steps. The first click on Print view puts a report on screen, with a Print button at
the end of the page. This Print button generates a report formatted for the printer.

The Database Print View
Clicking Print view on the Structure sub-page for a database generates a list of
tables. This list contains the number of records, storage engine, size, comments, and
the dates of creation and last update for each table.

System Documentation

[220]

The Selective Database Print View
Sometimes we prefer to get a report only for certain tables. This can be done from the
Structure sub-page for a database by selecting the tables we want and choosing Print
view from the drop-down menu:

Chapter 15

[221]

The Table Print View
There is also a Print view link on the Structure sub-page for each table. Clicking this
produces information about columns, indexes, space usage, and row statistics:

System Documentation

[222]

The Data Dictionary
A more complete report about tables and columns for a database is available from
the Structure sub-page of the Database view. We just have to click Data dictionary to
get this report, which is partially shown here:

Chapter 15

[223]

The MIME column is empty until we add MIME-related information to some
columns. (This is explained in Chapter 16.)

Relational Schema in PDF
In Chapter 11, we defined relations between the books and authors tables. These
relations were used for various foreign key functions (for example, getting a list of
possible values in Insert mode). Now we will examine a feature that enables us to
generate a custom-made relational schema for our tables in a popular format: PDF.

Adding a Third Table to Our Model
To get a more complete schema, we will now add another table, the countries table,
to our database. Here is its export file:

CREATE TABLE 'countries' (
 'country_code' char(2) NOT NULL default '',
 'description' varchar(50) NOT NULL default '',
 PRIMARY KEY ('country_code')
) ENGINE=MyISAM DEFAULT CHARSET=latin1;

INSERT INTO 'countries' ('country_code', 'description') VALUES ('ca',
'Canada');

System Documentation

[224]

INSERT INTO 'countries' ('country_code', 'description') VALUES ('uk',
'United Kingdom');

We will now link this table to the authors table. Firstly, in Relation view for the
countries table, we specify the field that we want to display:

Then, we add a field with the same name, country_code, to the authors table,
and in the Relation view, we link it to the newly created countries table. We must
remember to click Go for the relation to be recorded. For this example, it is not
necessary to enter any country data for an author, as we are interested only in the
relational schema.

Chapter 15

[225]

Editing PDF Pages
Each relational schema is called a page. We can create or edit a page by clicking Edit
PDF pages in the Operations sub-page of the Database view.

Page Planning
In the current phpMyAdmin version, a relational schema cannot span multiple
databases. But even working with just one database, the number of tables might be
large. Representing the various relations between them in a clear way could be a
challenge. This is why we may use many pages, each showing some tables and their
relations.

We must also take into account the dimensions of the final output. Printing on
letter-size paper gives us less space to show all our tables and still have a
legible schema.

Creating a New Page
Since there are no existing pages, we need to create one. Since our most important
table is about books, we will name this page books.

We will choose which tables we wish to see in the relational schema. We could
choose each table one by one, but for a good start, checking the Automatic layout
checkbox is recommended. Doing this puts all the related tables from our database
onto the list of tables to be included in the schema. It then generates appropriate
coordinates so that the tables will appear in a spiral layout, starting from the center
of the schema. These coordinates are expressed in millimeters, with (0,0) being
located at the upper left corner. We then click Go.

Editing a Page
We now get a page with three different sections. The first one is the master menu,
where we choose the page on which we want to work (from the drop-down menu);
we can also delete the chosen page. We could also eventually create a second
schema (page).

System Documentation

[226]

The next section is the table placement part. We now see the benefit of the Automatic
layout feature: we already have our three tables selected, with the (X,Y) coordinates
filled in. We can add a table (on the last line), delete a table (using the checkbox), and
change the coordinates (which represent the position of the upper left corner of each
table on the schema):

To help set exact coordinates, a visual editor is available for JavaScript-enabled
browsers. To control the availability of this editor, the following parameter (which is
set to TRUE by default) is available:

$cfg['WYSIWYG-PDF'] = TRUE;

The editor appears when the Toggle scratchboard button is clicked once. It will
disappear when this button is clicked again. We can move tables on the scratchboard
by using "drag and drop" – the coordinates will change accordingly. The appearance
of the tables on the scratchboard provides a rough guide to the final PDF output.
Some people prefer to see only the table names (without every column name) on
the scratchboard. This can be done by unchecking the Column names checkbox and
clicking Save.

Chapter 15

[227]

When we are satisfied with the layout, we must click Save.

Displaying a Page
The last section of the screen is the PDF report-generation dialog. This is also
available from the Operations sub-page of the Database view, now that we have
created a page:

The available options are:

Show grid: The schema will have a grid layer with coordinates displayed.
Show color: The links between tables, table names, and special columns
(primary keys and display fields) will be in color.
Show dimensions of table: The visual dimension of each table in the table
title (for example, 32x30) will be displayed
Display all Tables with same width? All tables will be displayed using the
same width. (Normally, the width adjusts itself according to the length of the
table and column names.)
Data Dictionary: The data dictionary, which was covered earlier in this
chapter, will be included at beginning of the report.
Data Dictionary format: Here we choose the printed orientation of
the dictionary.
Paper size: Changing this will influence the schema and the scratchboard
dimensions.

•

•

•

•

•

•

•

System Documentation

[228]

In config.inc.php, the following parameters define the available paper sizes and
the default choice:

$cfg['PDFPageSizes'] = array('A3', 'A4', 'A5', 'letter',
'legal');
$cfg['PDFDefaultPageSize'] = 'A4';

The following screenshot shows the last page of the generated report (the schema
page) in the PDF format. The first four pages contain the data dictionary with an
additional feature: on each page, the schema can be reached by clicking the table
name, and in the schema, each page in the data dictionary can be reached by clicking
the corresponding table.

Arrows point in the direction of the corresponding foreign table. If the Show color
has been selected, primary keys are shown in gray, and display fields in black:

Here is another another example generated from the same books PDF page
definition, this time with the grid but no color:

Chapter 15

[229]

A Note about Fonts Used
All the text we see in the PDF schema is drawn using a specific font. phpMyAdmin
tries to use the first font defined in the current language's message file (for example,
lang/english-iso-8859-1.inc.php) according to the configuration directive
$right_font_family, which contains 'arial, helvetica, geneva, sans-serif'.
However, not all font families are supported.

For actual PDF generation, phpMyAdmin relies on the fpdf library
(http://www.fpdf.org). This library has two ways of using fonts: embedded and
not embedded. Embedded fonts would have produced a bigger PDF file, because the
whole font would be included in the PDF. This is why the default option chosen by
phpMyAdmin is not embedded.

For this to work, the library uses the TrueType fonts present in the client operating
system, so it needs an interface to those fonts. This interface is contained in the
font mapping files located in the libraries/fpdf/font directory. (All directories
mentioned here are visible under the main phpMyAdmin directory.)

The library can make some font substitutions, but in general, we should ensure
that the necessary font mapping file is present. For English, the first font defined in
$right_font_family is arial, but phpMyAdmin uses helvetica instead. The
Standard font mapping files shipped with phpMyAdmin are helvetica, courier,
times, and tahoma.

To add a font mapping file, we must first add it to the library (as explained in
a tutorial available on the http://www.fpdf.org website), and then modify
phpMyAdmin's pdf_schema.php source code.

Summary
In this chapter, we covered the documentation features offered by phpMyAdmin – the
print view for a database or a table, and the data dictionary for a complete column
list. We also covered PDF relational schemas. In particular, we saw how to create and
modify a PDF schema page and how to use the visual editor (scratchboard).

MIME-Based Transformations
In this chapter, we cover a powerful phpMyAdmin feature: its ability to transform a
column's contents according to specific rules called the transformations. This chapter
describes how we can transform the contents that we see in the Browse mode for a
table. Normally, the exact contents of each row are displayed, except that:

TEXT and CHARACTER fields might be truncated, according to
$cfg['LimitChars'] and whether we have clicked on the Full Text icon.
BLOB fields might be replaced by a message like [BLOB - 1.5 KB].

We will use the term cell to indicate a specific column of a specific row. The cell
containing the cover photograph for the 'Future souvenirs' book (a BLOB column) is
currently displayed as cryptic data like ‰PNG\r\n\Z\n\0\0\0\rIHDR\0 or as a
message stating the BLOB field's size. It would be interesting to see a thumbnail of
the picture directly in phpMyAdmin, and possibly the picture itself.

We define a transformation as a mechanism by which all the cells relating to a
column are transformed at browse time, using the metadata defined for this column.
Only the cells visible on the results page are transformed. The transformation logic
itself is coded in PHP scripts, stored in libraries/transformations, and called
using a plug-in architecture.

To enable this feature, we must set $cfg['BrowseMIME'] to TRUE in config.inc.
php. The relational system must be in place (see Chapter 11), because the metadata
necessary for the transformations is not available in the official MySQL table
structure; it is an addition made especially for phpMyAdmin.

In the documentation section on phpMyAdmin's home
site, there is a link pointing to additional information for
developers who would like to learn the internal structure
of the plug-ins in order to code their own transformations.

•

•

MIME-Based Transformations

[232]

The MIME Column's Settings
If we go to the Table view of the Structure page for the books table and click the
Change link for the cover_photo, we see three additional attributes for the fields:

MIME type
Browser transformation
Transformation options

For a specific field, it is possible to indicate only one type of transformation. Here,
the field is a BLOB field, so it can hold any kind of data, but for phpMyAdmin to
interpret and act correctly on the data, the transformation system must be informed
of the data format and the intended results. Accordingly, we have to ensure that we
upload data that always follows the same file format.

We will first learn the purpose of those attributes, and then try some possibilities in
the Examples of Transformation section.

MIME Types
The MIME specification has been chosen as a metadata attribute to categorize the
kind of data a column holds. The current possible values are:

image/jpeg
image/png
text/plain
application/octetstream

The auto-detect option in the menu is yet to be implemented, so we do not use it.

The text/plain type can be chosen for a column containing any kind of text (for
example, XHTML or XML text).

Browser Transformations
This is where we set the exact transformation to be done. More than one
transformation may be supported per MIME type. For example, for the image/jpeg
MIME type, we have two transformations available: image/jpeg: inline for a
clickable thumbnail of the image, and image/jpeg: link to display just a link.

•
•
•

•
•
•
•

Chapter 16

[233]

As we can see in the following image, moving the mouse over each choice in the
drop-down menu gives a short explanation of the corresponding transformation.
A more complete explanation of the transformations and the possible options is
available on clicking on the transformation descriptions link.

Transformation Options
We will see in the Examples of Transformations section that some transformations
accept options. For example, a transformation that generates an image will need the
width and height in pixels. A comma is used to separate the values in the option list,
and some options may need to be enclosed within quotes.

Some options have a default value, and we must be careful to respect the
documented order for options. For example, if there are two options and we
only want to specify a value for the second option, we can use empty quotes as a
placeholder for the first option to let the system use its default value.

Requirements for Image Generation
The normal generation of thumbnails requires that some components exist on the
web server and that a parameter in config.inc.php be correctly configured.

The GD2 Library
phpMyAdmin uses internally some functions to create the thumbnails. These
functions need the GD2 library to be present on our PHP server.

MIME-Based Transformations

[234]

phpMyAdmin can detect the presence of the correct GD2 library, but this detection
takes some time, and takes place not once per session but on almost every action
taken in phpMyAdmin.

Setting the $cfg['GD2Available'] parameter in config.inc.php to its default
value, 'auto' indicates that a detection of the library's presence and version is
needed.

If we know that the GD2 library is available, settings $cfg['GD2Available']
to yes will make execution quicker. If the GD2 library is not available, you are
recommended to set this parameter to no.

To find out which which GD2 library we have on the server, we can go to
phpMyAdmin's Home page and click Show PHP information. We then look for a
section titled gd and verify which version is identified.

The JPEG and PNG Libraries
Our PHP server needs to have support for JPEG and PNG images if we or our users want
to generate thumbnails for those types of images.

Memory Limits
On some PHP servers, the default value in php.ini for memory_limit is 8 MB. This
is too low for correct image manipulation. For example, in one test, a value of 11 MB
in memory_limit was needed to generate the thumbnail from a 300 KB JPEG image.

Chapter 16

[235]

Examples of Transformations
We will now discuss a few transformation examples. We will start by changing the
field type of our cover_photo field.

Clickable Thumbnail (.jpeg or .png)
We change our cover_photo field type from BLOB to MEDIUMBLOB to
ensure that we can upload photographs that are bigger than 65 KB to it. We then
enter the following attributes:

Here, the options are presented as width,height. If we omit the options, the default
values are 100,100. The thumbnail generation code preserves the original aspect
ratio of the image, so the values entered are the maximum width and height of the
generated image. We then upload a .jpeg file in a cell (using instructions from
Chapter 6). As a result, we get the following in Browse mode for this table:

This thumbnail can be clicked to reveal the full-size photograph.

The thumbnail is not stored anywhere in MySQL, but
generated each time we go into Browse mode for this set
of rows. On a Pentium-III 500 MHz server, we commonly
experience a generation time of 0.5 to 1 second per image.

For a .png file, we have to use image/png as the MIME type, and image/png: inline
as the transformation.

MIME-Based Transformations

[236]

Another point to note: the $cfg['ShowBlob'] parameter does not influence the
thumbnail's display – it can be set to TRUE or FALSE.

Links to an Image
To get a link without thumbnails, we use the image/jpeg: link transformation.
There are no transformation options. This link can then be used to view the
photograph (by left-clicking on the link) and then possibly download it (by
right-clicking on the photograph itself):

Date Formatting
We have a field named date_published in our books table; let's ensure that its
type is DATETIME. Then we set its MIME type to text/plain and the browser
transformation to text/plain: dateformat. The next step is to edit the row for the
'Future souvenirs' book, and enter 2003-01-01 14:56:00 in the date_published field.
When we browse the table, we now see the field formatted. Moving the mouse over
the field reveals the unformatted original contents:

This transformation accepts two options. The first is the number of hours that will be
added to the original value. (By default, this is zero.) Adding the number of hours
can be useful if we store all the times based on Universal Coordinated Time (UTC)
but want to display them for a specific zone (UTC+5). The second option is the time
format we want to use, made from any PHP strftime parameters. So, if we put this
in the transformation options, '0','Year: %Y', we will get:

Chapter 16

[237]

Links from Text
Suppose that we have put a complete URL: http://domain.com/abc.pdf — in
the description field in our books table. The text of the link will be displayed while
browsing the table, but we would not be able to click it. We'll now see the use of the
text/plain MIME type in such a situation.

text/plain: link
If we use a MIME type of text/plain and a browser transformation of text/plain: link,
in the scenario just mentioned, we will still see the text for the link, and it will
be clickable:

If all the documents that we want to point to are located at a common URL prefix, we
can put this prefix (for example, http://domain.com/) in the first transformation
option, with the enclosing quotes. Then we would only put the last part of the URL
(abc.pdf) in each cell.

A second transformation option is available for setting a title. This would be
displayed in Browse mode instead of the URL contents, but a click would
nonetheless bring us to the intended URL.

If we use only the second transformation option, we have
to put quotes where the first option is to be entered, as
follows: '','this is the title'.

MIME-Based Transformations

[238]

text/plain: imagelink
This transformation is similar to the previous one, except that we place in the cell
a URL that points to an image. This image will be fetched and displayed in the cell
along with the link text. Although the image here is stored on the local server, it
could be anywhere on the Web.

The first available option is the common URL prefix (like the one for text/plain: link),
the second option is the width of the image in pixels (default: 100), and the third is
the height (default: 50).

If the text for the link is too long, the transformation does not occur. In this case,
we can click the Full Texts icon to reveal the complete link. Then we'll see the
image altogether.

Because the link may refer to any browser-supported image type, which is not
necessarily covered by phpMyAdmin's thumbnail generation mechanism, the image
is just resized according to the options. To see the original image, we can click
the link.

Preserving the Original Formatting
Normally, when displaying text, phpMyAdmin does some escaping of special
characters. For example, if we enter This book is good in the description
field for one book, we would normally see This book is good when
browsing the table. However, if we use the transformation text/plain: formatted for
this field, we get the following while browsing:

Chapter 16

[239]

In this example, the results are correct. However, other HTML entered in the data
field could produce surprising results (including invalid HTML pages). For example,
because phpMyAdmin presents results using HTML tables, a non-escaped </table>
tag in the data field would ruin the output.

Displaying Parts of a Text
The text/plain: substr transformation is available to display only a part of the text.
Here are the options:

First: where to start in the text (default: 0)
Second: how many characters (default: all the remaining text)
Third: what to display as a suffix to show that truncation has occurred
(default: ...)

Remember that $cfg['LimitChars'] is doing a character truncation for every non-
numeric field, so text/plain: substr is a mechanism for fine-tuning this field-by-field.

Download Link
Let's say we want to store a small audio comment about each book, inside
MySQL. We add to the books table a new field, with name audio_contents and
type MEDIUMBLOB, to the books table. We set its MIME type to application/
octetstream and choose the application/octetstream: download transformation. In
the options, we insert 'comment.wav'.

This MIME type and extension will inform our browser about the incoming data,
and the browser it should open the appropriate player. To insert a comment, we
first record it in .wav format and then upload the contents of the file into the
audio_contents field for one of the books. When browsing our table, we can see a
link for our audio comment.

•

•

•

MIME-Based Transformations

[240]

Hexadecimal Representation
Characters are stored in MySQL (as in computers in general) as numeric data and
converted into something meaningful for the screen or printer. Users sometimes cut
and paste data from one application to phpMyAdmin, leading to unexpected results
if the characters are not directly supported by MySQL. A case I remember involved
special quotation marks entered in a Microsoft Word document and pasted to
phpMyAdmin. It helps to be able to see the exact hexadecimal codes, and this can be
done by using the application/octetstream: hex transformation.

In the following example, we have applied this transformation to the title field of
our books table. When browsing the row containing the Future souvenirs title, we
now see:

Since we know which character set this column is encoded with (see Chapter 17),
we can compare its contents with a chart describing each character. For instance,
http://en.wikipedia.org/wiki/Latin1 describes the latin1 character set.

SQL Pretty Printing
Let's say we are using a table to store the text of a course about SQL. In one column
we might have put sample SQL statements. With the text/plain: sql transformation,
these SQL statements will be displayed in color with syntax highlighting when
browsing this table.

External Applications
The transformations that have been described previously are implemented directly
from within phpMyAdmin. However, some transformations are better done via
existing external applications.

The text/plain: external transformation enables us to send the cell's data to another
application that will be started on the web server, capture this application's output,
and display it in the cell's position.

This feature is only supported on a Linux or UNIX server (under Microsoft
Windows, output and error redirection cannot be easily captured by the PHP
process). Furthermore, PHP should not be running in safe mode, so the feature might
not be available on hosted servers. A minimum PHP version of 4.3.0 is required for
this feature to work.

Chapter 16

[241]

For security reasons, the exact path and name of the application cannot be set from
within phpMyAdmin as a transformation option. The application names are set
directly inside one of the phpMyAdmin scripts.

First, in the phpMyAdmin installation directory, we edit the
text_plain__external.inc.php file in libraries/transformations/,
and find the following section:

$allowed_programs = array();
//$allowed_programs[0] = '/usr/local/bin/tidy';
//$allowed_programs[1] = '/usr/local/bin/validate';

No external application is configured by default; we have to explicitly add our own.

The names of the transformation scripts are constructed
using the following format: the MIME type, a
double underscore, and then a part indicating which
transformation occurs.

Each allowed program must be described here, with an index number, starting from
0, and its complete path. Then we save the modifications to this script and put it back
on the server if needed. The remaining setup is completed from the panel where we
chose the options for the other browser transformations.

Of course, we choose text/plain: external in the transformations menu.

As the first option, we place the application number. (For example, 0 would be for
the tidy application.) The second option holds the parameters we need to pass to this
application. If we want phpMyAdmin to apply the htmlspecialchars() function to
the results, we put 1 as the third parameter. (This is done by default.) We could put a
0 there to avoid protecting the output with htmlspecialchars().

If we want to avoid reformatting the cell's lines, we put 1 as the fourth parameter.
This will use the NOWRAP modifier, and is done by default.

External Application Example: In-Cell Sort
This example shows how we can sort the text contents of one cell. We start by
modifying the text_plain__external.inc.php script, as mentioned in the above
section, to add the sort program:

$allowed_programs[0] = '/bin/sort';

Note that our new program bears the index number 0.

MIME-Based Transformations

[242]

Then we add a TEXT field, keywords, to our books table and fill in the
MIME-related information, entering '0','-r' as the transformation options:

The '0' here refers to the index number for sort, and the '-r' is a parameter for sort,
which makes the program sort in reverse order.

Next we Edit the row for the book A hundred years of cinema (volume 1), entering some
keywords in no particular order and hitting Go to save:

To test the effects of the external program, we browse our table and see the sorted
in-cell keywords:

Indeed, the keywords are displayed in reverse sorted order in this cell.

Summary
In this chapter, we saw how we can improve the browsing experience by
transforming data using various methods. We can see thumbnail and full-size images
of .jpeg and .png BLOB fields, generate links, format dates, display only parts of
texts, and execute external programs to reformat each cell's contents.

Character Sets and Collations
This chapter explains how phpMyAdmin stores and fetches data, and how it deals
with the character set and collation features available under MySQL. The program's
behavior is highly dependent on the MySQL version used.

A character set describes how symbols for a specific language or dialect are encoded.
A collation contains rules to compare the characters of a character set. (See the
MySQL 4.1.x and Later section in this chapter.)

The character set used to store our data may be different from the one used to display
it, leading to data discrepancies. Thus, a need to transform the data arises.

Language Files and UTF-8
"Unicode is an industry standard designed to allow text and symbols […]
to be consistently represented and manipulated by computers". See
http://en.wikipedia.org/wiki/Unicode and also http://www.unicode.org.

Unicode currently supports more than 600 languages, which is its main advantage
over other character sets available with ISO or Windows. This is especially important
with a multi-language product like phpMyAdmin.

To represent or encode these Unicode characters, many Unicode Transformation
Formats (UTF) exist. A popular transformation format is UTF-8 which uses
one to four 8-bit octets per character. For more details,
visit http://en.wikipedia.org/wiki/UTF-8.

Note that the browser must support UTF-8 (as most current browsers do). The
phpMyAdmin distribution kit includes a UTF-8 version of every language file in the
lang subdirectory, and some of them are only available in UTF-8 encoding.

Character Sets and Collations

[244]

A majority of the language files are also coded using ISO or Windows character sets,
with the goal of supporting older browsers. Also, when connecting to a pre-MySQL
4.1 server, a user can still choose a non-UTF-8 character set if his or her web server or
phpMyAdmin version are not configured to recode characters. (See the Data Recoding
section in this chapter.)

The availability of a UTF-8 language file in the Language selector depends on
both the phpMyAdmin version and the MySQL version. If we are using a
phpMyAdmin version before 2.6.0, availability also depends on some of the
settings in config.inc.php.

Versions of MySQL Prior to 4.1.x
Versions of MySQL before 4.1.x do not transform the data to the desired character
set, so the actual recoding is done directly by phpMyAdmin, both before sending
data to the MySQL server and after receiving it.

Data Recoding
Here is the most important configuration parameter for recoding, shown here with
its default value:

$cfg['AllowAnywhereRecoding'] = FALSE;

To activate recoding, we have to set it to TRUE. When this is done, phpMyAdmin
verifies that the conditions for recoding are met. For the actual encoding of data, the
PHP component of the web server must support the iconv or the recode module.
If this is not the case, and the parameter has been set to TRUE, the following error
message will be generated:

Can not load iconv or recode extension needed for charset conversion, configure
php to allow using these extensions or disable charset conversion in phpMyAdmin.

If this message is displayed, consult your system's documentation (PHP or the
operating system) for the installation procedures.

Before phpMyAdmin 2.6.0, the default config.inc.php file did not make use of
UTF-8 encoding, so the $cfg['AllowAnywhereRecoding'] parameter was set to
FALSE, and no UTF-8 languages were offered in the Language selector. To enable it,
we just changed the parameter to TRUE.

Since phpMyAdmin 2.6.0, the parameter is still set to FALSE by default, but the UTF-8
language choices are nevertheless displayed in the Language selector. This may lead
to encoding problems. (See the section The Impact of Switching letter in this chapter.)

Chapter 17

[245]

Another parameter, $cfg['RecodingEngine'], specifies the actual recoding engine,
the choices being auto, iconv, and recode. If it is set to auto, phpMyAdmin will
first try the iconv module, and then the recode module.

Character Sets
When it is connected to a pre-MySQL 4.1.x server, phpMyAdmin has limited
support for character set conversion. Currently we can specify which character set
applies to a query and its results. The character set used by default is defined by the
following parameter.

$cfg['DefaultCharset'] = 'iso-8859-1';

This is only the default choice; users may always select another character set from
the choices listed in this parameter (the actual parameter in config.inc.php
contains more):

$cfg['AvailableCharsets'] = array(
 'iso-8859-1',
 'iso-8859-2',
 'iso-8859-3',
 'iso-8859-4');

These choices are displayed to users in the same order as that defined in the
parameter $cfg['AvailableCharsets'], so, we can move the more popular choices
to the top. Any character set supported by the iconv or recode recoding engines
may be used.

If we are using phpMyAdmin 2.6.0 or newer, and $cfg['AllowAnywhereRecoding'
] has been left set to its default value FALSE, we will see the following on the
Home page:

Character Sets and Collations

[246]

There is no MySQL Charset selector. The character set defined in the chosen
Language (here English iso-8859-1) will be used to communicate with MySQL.

Choosing the Effective Character Set
Now, we set $cfg['AllowAnywhereRecoding'] to TRUE. Then we choose English
(en-utf-8) in the Language selector. The Home page has changed:

The MySQL Charset choice appears only if the current chosen Language uses utf-8
encoding. From now on, every communication that occurs between the web server
and the MySQL server will use this MySQL character set.

The choice of character set is remembered for 30 days using
a cookie mechanism. Depending on where the cookies are
stored (on the local computer or on a network server), the
character set may need to be chosen again if we log in to
phpMyAdmin from another computer.

The Impact of Switching
When we choose a character set, all the data stored in MySQL will be recoded with
this character set. If we subsequently change the character set used by phpMyAdmin,
we will get incorrect results when fetching the data. There is no easy way of finding
which character set was used to store a particular row of data.

Chapter 17

[247]

Here is an example with our authors table. We first create a new author with a
character é in his name:

There is no problem here when inserting, browsing, or searching for this new author,
as the chosen character set, iso-8859-1, can deal with the é character.

However, if we switch the MySQL character set to UTF-8 later on, we will have a
problem when browsing the authors table:

The same problem occurs when we switch from one language to another, if
$cfg['AllowAnywhereRecoding'] is set to FALSE and the two languages are encoded
in different character set. It is therefore highly recommended to avoid switching
character sets if our system is not configured to do the necessary conversion.

Importing and Exporting with Character Sets
If $cfg['AllowAnywhereRecoding'] is set to TRUE, then the File to import section of
the Import sub-pages is modified so that we can choose a character set for the file to
be imported:

Character Sets and Collations

[248]

In the Export dialog, we can also choose the character set of the file to be created:

MySQL 4.1.x and Later
Since MySQL 4.1.x, the MySQL server does the character recoding work for us. Also,
MySQL enables us to indicate the character set and collation for each database, each
table, and even each field. A default character set for a database applies to each of
its tables, unless it is overridden at the table level. The same principle applies to
every field.

Chapter 17

[249]

Since phpMyAdmin 2.6.0, support for MySQL 4.1.x character set and collation
features is no longer experimental, as it was in previous versions.

The $cfg['AllowAnywhereRecoding'] parameter has no impact for MySQL version
4.1.x and later, except to enable the Character set of the file drop-down menu in the
Export sub-page.

Collations
When strings have to be compared and sorted, precise rules must be followed by
the system (MySQL in this case). For example, is 'A' equivalent to 'a'? Is 'André'
equivalent to 'Andre'? A set of these rules is called a collation.

A proper choice of collation is important for obtaining the intended results when
searching data, for example from phpMyAdmin's Search page, and also when
sorting data.

For an introduction to collations, see http://dev.mysql.com/doc/mysql/en/
Charset-general.htm, and for a more technical explanation of the algorithms
involved, refer to http://www.unicode.org/reports/tr10/.

The Home Page
Here is what the Home page looks like, when connecting to a MySQL 4.1.x or later
server (the sections that follow detail the changes):

Character Sets and Collations

[250]

Creating a Database
When creating a database, we can choose its default character set and collation
with the Collation dialog. This setting can be changed later. (See the section
The Database View.)

Available Character Sets and Collations
The Character Sets and Collations link on the Home page opens the Server view
for the Charsets sub-page, which lists the character sets and collations supported
by the MySQL server. The default collation for each character set is shown with
a different background color (using the row-marking color defined in
$cfg['BrowseMarkerColor']):

Chapter 17

[251]

Effective Character Sets and Collations
phpMyAdmin picks the 'effective' character set—the one that best fits our selected
language (which obviously is the one we want to see in our browser). For example,
we will see the following on the Home page:

The character set information (as seen here after MySQL charset) is passed to
the MySQL server. MySQL then transforms the characters that will be sent to our
browser into this character set. MySQL also interprets what it receives from the
browser according to the character set information. Remember that all tables and
fields have a character set information describing how their data is encoded.

We can also choose which character set and collation will be used for our connection
to the MySQL server using the MySQL connection collation dialog. Normally, the
default value should work, but if we are entering some characters using a different
character set, we can choose the proper character set in this dialog.

The following parameter defines the default connection collation:

$cfg['DefaultConnectionCollation'] = 'utf8_unicode_ci';

Character Sets and Collations

[252]

The Database View
We can also use the Database view's Operations sub-page to change the default
character set for the database:

We can see the collation used for each table on the Structure page for the database:

The Table View
We can use the Table view's Operations sub-page to change the default character set
and collation information for a table:

Chapter 17

[253]

We can also use the Table view's Structure sub-page to choose the character set
for a column, by clicking the Change link for this column:

Importing and Exporting with Character Sets
When exporting results, we can see the default character set and collation
information for the table and its columns:

CREATE TABLE 'authors' (
 'author_id' int(11) NOT NULL default '0',
 'author_name' varchar(30) collate latin1_general_ci NOT NULL
default '',

Character Sets and Collations

[254]

 'phone' varchar(30) collate latin1_general_ci default NULL,
 'country_code' char(2) collate latin1_general_ci NOT NULL default '',
 PRIMARY KEY ('author_id')
) ENGINE=MyISAM DEFAULT CHARSET=latin1 COLLATE=latin1_general_ci;

Server View
In the Server view, we can obtain statistics about the databases. (See the Database
Information section in Chapter 18.) If our server supports character sets and collations,
we will see an additional information column, Collation, on this page:

Kanji Support
If phpMyAdmin detects usage of the Japanese language, it checks whether PHP
supports the mb_convert_encoding() multi-byte strings function. If it does,
additional radio buttons are displayed on the following pages so that we can choose
between the EUC-JP and SJIS Japanese encodings:

export
insert text from a file
query box

Summary
In this chapter, we covered the use of language files in phpMyAdmin. We looked at
UTF-8 and the impact of switching from one character set to another. We also saw
how phpMyAdmin has to recode data when the version of MySQL is earlier than
4.1.x, and we looked at the character set and collation features of MySQL version
4.1.x and later.

•

•

•

MySQL Server Administration
with phpMyAdmin

This chapter will discuss how a system administrator can use the phpMyAdmin
server management features for day-to-day user account maintenance, server
verification, and server protection. Non-administrators can also obtain server
information from phpMyAdmin.

Entering the Server View
The Server view can be accessed from the Home page by choosing one of the
following links:

Show MySQL runtime information
Show MySQL system variables
Show processes
Storage Engines
Privileges
Databases
Binary log
Import
Export

The Privileges link is visible only if we are logged in as a privileged user. When in
the Server view, we see a menu to go to the other server-related sub-pages.

•

•

•

•

•

•

•

•

•

MySQL Server Administration with phpMyAdmin

[256]

User and Privileges Management
The Privileges sub-page in the Server view contains dialogs to manage MySQL
user accounts, and their privileges on global, database, and table levels. This
sub-page is centered on the user and is hierarchical: for example, when editing a
user's privileges, we can see the global privileges as well as the database-specific
privileges. Then we can go deeper to see the table-specific privileges for this
database-user combination.

The User Overview
The first page displayed when we enter the Privileges sub-page is called User
overview. This shows all user accounts and a summary of their global privileges:

From this page we can:

Edit a user's privileges with the Edit link on a user's line.
Use the checkboxes to remove users with the Remove selected users dialog.
Access the page where the Add a new user dialog is available.
Reload the privileges. The effective privileges (the ones against which the
server bases its access decisions) are the privileges that are located in the

•

•

•

•

Chapter 18

[257]

server's memory. Modifications to the privileges made from the User
Overview page are made both in memory and on disk, in the mysql
database. Modifications made directly on the mysql database do not have
immediate effect. The Reload operation reads the privileges from the
database and makes them effective in memory.

The displayed users' list has columns with the following characteristics:

User: Users listed in alphabetical order.
Host: The host for which this user definition applies. This is the machine
name or IP address from which this user will be connecting to the MySQL
server. A % value here indicates all hosts.
Password: Contains Yes if a password is defined and No if one isn't. The
password itself cannot be seen from phpMyAdmin's interface or by
directly looking at the mysql.user table, as it is obfuscated with a one-way
hashing algorithm.
Global privileges: Listed for each user.
Grant: Contains Yes if the user can grant his or her privileges to others.

Adding a User
The Add a new user link brings a dialog for user account creation:

•

•

•

•

•

MySQL Server Administration with phpMyAdmin

[258]

User Name
The User name menu offers two choices. We can choose Use text field and input
a user name in the box, or we can choose Any user to create an anonymous user
(the blank user). Let's choose Use text field and enter bill.

Host
By default, this menu is set to Any host with % as the host value. The Local choice
means "localhost". The Use host table choice (which creates a blank value in the
host field) means to "look in the mysql.hosts table for database-specific privileges".
Choosing Use text field allows us to input the exact host value we want. Let's
choose Local.

Password
Even though it's possible to create a user without a password (with the No password
choice), it's best to have a password. We have to enter it twice (as we cannot see what
is entered) to confirm the intended password. Let's input bingo.

Some administrators prefer to improve security by having phpMyAdmin generate a
password itself. In the Generate Password dialog, a click on Generate puts a random
password (in clear) on-screen. At this point, we should note the password so that we
can pass it on to the user. Then a click on Copy puts this password in the Password
and Re-Type fields.

Global Privileges
Global privileges determine the user's access to all databases, so these privileges are
sometimes known as "superuser privileges". A normal user should not have any of
these privileges unless there is a good reason.

Of course, if we are really creating a superuser, we will select every global privilege
that he or she needs. These privileges are further divided into Data, Structure, and
Administration groups.

In our example, bill will not have any global privileges.

Resource Limits
We can limit the resources used by this user on this server (for example, the
maximum queries per hour). Zero means no limit. We will not impose any resources
limits on bill.

Chapter 18

[259]

The following screenshot shows the status of the screen just before hitting Go to
create this user's definition (with the other fields left set to their default values):

Editing a User
The page used to edit a user appears after a user's creation, or whenever we click
Edit for a user in the User overview page. There are four sections on this page, each
with its own Go button, so each section is operated independently and has a distinct
purpose.

Edit Privileges
The section for editing the user's privileges has the same look as the Add a new User
dialog, and is used to view and to change global privileges.

Database-Specific Privileges

In this section, we define the databases to which our user has access, and his or her
exact privileges. Currently we see None because we haven't defined any. There are
two ways of defining database privileges. First, we can choose one of the existing
databases from the drop-down menu:

MySQL Server Administration with phpMyAdmin

[260]

This assigns privileges only for the chosen database. We can also choose Use text
field and enter a database name. We could insert a non-existent database name here
so that this user can create it later (provided we give him or her the CREATE privilege
in the next panel), or we could use special characters like the underscore and the
percent sign for wildcards.

For example, entering bill here would enable him to create a bill database, and
entering bill% would enable him to create a database with any name that starts with
bill. For our example, we will enter bill.

The next screen is used to set bill's privileges on the bill database and create table-
specific privileges.

To learn more about the meaning of a specific privilege, we can move the mouse over
a privilege name (which is always in English) and an explanation about this privilege
appears in the current language. We give SELECT, INSERT, UPDATE, DELETE,
CREATE, ALTER, INDEX, and DROP privileges to bill on this database, and
click Go.

Chapter 18

[261]

After the privileges have been assigned, the interface stays at the same place so that
we can further refine these privileges. We cannot assign table-specific privileges for
the moment because the database does not yet exist.

The way to go back to bill's general privileges page is to click the 'bill'@'localhost' title:

This brings us back to the familiar page, except for a change in one section:

MySQL Server Administration with phpMyAdmin

[262]

We see the existing privileges on the bill database for user bill (which we can Edit
or Revoke), and we can add privileges for bill on another database. We also see that
bill has no table-specific privilege on the bill database.

Changing the Password
This dialog is part of the Edit user page, and we can use it to change bill's password
or to remove it enabling bill to login without a password:

Changing Login Information or Copying a User
This dialog can be used to change the user's login information, or to copy his or her
login information to a new user:

Chapter 18

[263]

For example, suppose that Bill calls and tells us that he prefers the login name billy
instead of bill. We just have to add a y to the user name, choose Local as the host,
and select delete the old one from the user tables:

After this operation, bill no longer exists in the mysql database, and all his
privileges, including the privileges on the bill database, will have been transferred
to the new user, billy. But bill's user definition will still exist in memory, so it is still
effective. If we had chosen the delete the old one from the user tables and reload
the privileges afterwards option instead, bill's user definition would immediately
have ceased to be valid.

Alternatively, we could have created another user based on bill by making use of the
keep the old one choice. We can transfer the password to the new user by choosing
Do not change the password, or change it by entering a new password twice. The
revoke all active privileges option immediately terminates the effective current
privileges for this user if he or she is logged in.

Removing a User
This is done from the User overview section of the Privileges page. We select the
user to be removed, and then (in Removing selected users) we can choose to Drop
any databases that have the same name as the users we are deleting. A click on Go
effectively removes the selected users.

MySQL Server Administration with phpMyAdmin

[264]

Database Information
When we enter the Databases sub-page, we see the list of existing databases. If the
MySQL server is 5.0.2 or later, we immediately see the accompanying statistics,
because these versions provide a fast way of gathering these statistics:

However, prior to MySQL 5.0.2, the statistics are not displayed:

Chapter 18

[265]

We also see an Enable Statistics link. By default statistics are not enabled because
computing the size of data and indexes for all the tables in all the databases may cost
valuable MySQL server resources.

Enabling Statistics
If we click this Enable Statistics link, a modified page appears:

Sorting Statistics
By default, the list is sorted by database name in ascending order. If we need to find
the database with the most tables, or the database that takes the most space, a simple
click on the Tables or Total column header sorts them accordingly. A second click
reverses the sort order.

Checking the Database Privileges Check
Clicking the Check Privileges link displays all the privileges on a specific database.
A user's global privilege might be shown here since it gives him or her access to this
database as well. We can also see the privileges specific to this database. An Edit link
takes us to another page that is used to edit the user's privileges:

MySQL Server Administration with phpMyAdmin

[266]

Dropping Selected Databases
This is an operation that should not be taken lightly. To drop one or more databases,
we check the boxes next to the names of the databases to be dropped and click on the
Drop Selected Databases link. A confirmation screen then appears.

Server Operations
The Status, Variables, and Processes links are available to get information about the
MySQL server or to act upon specific processes.

Server Status Verification
These statistics reflect the MySQL server's total activity, including (but not limited to)
the activity generated by queries sent from phpMyAdmin.

The General Status Page
Clicking the Status link produces runtime information about the server. The page
has several sections. First we get information about the elapsed running time and
the startup time, and then we get the total and average values for traffic and
connections (where the ø means average):

Chapter 18

[267]

Next, the statistics about queries are displayed (shown partially here). The average
number of queries per hour, minute, and second give a good indication of the
server load.

This is followed by statistics about each MySQL command, the absolute number of
times, hour average, and the number of times as a percentage of the total.

Depending on the MySQL version, many other sections containing server
information are displayed.

InnoDB Status
On servers supporting InnoDB, a link appears at the end of the InnoDB section.
When this link is clicked, information about the InnoDB subsystem is displayed,
including information about the last InnoDB error that occurred:

MySQL Server Administration with phpMyAdmin

[268]

Server Variables
The Variables sub-page displays various settings of the MySQL server, which can be
defined in, say, the my.cnf MySQL configuration file. These values can't be changed
from within phpMyAdmin:

Chapter 18

[269]

Server Processes
The Processes sub-page is available to superusers and normal users. A normal
user would see only the processes belonging to him or her, whereas a superuser sees
all the processes.

This page lists all active processes on the server, and a Kill link that allows us to
terminate a specific process.

MySQL Server Administration with phpMyAdmin

[270]

This example has only one running process, the process created by the SHOW
PROCESSLIST command itself. This process is not killable because it is no longer
running when we get to see the page. We would normally see more processes
running on a server.

Storage Engines
Information about the various storage engines is available on a two-level format.
First, the Engines tab displays an overview of the possible engines for the
current MySQL version. The names of the engines that are enabled on this server
are clickable:

A click on one engine name brings a detailed panel about its settings. Moving the
mouse over the light bulbs reveals even more information about a particular setting.

Chapter 18

[271]

The Binary Log
If MySQL's binary log is active on our server, the menu in the Server view changes
so that a Binary log tab appears. This tab gives access to an interface to the SHOW
BINLOG EVENTS command. This command produces the list of SQL statements
that have updated data on our servers. This list could be huge and currently
phpMyAdmin does not limit its display so we should take care.

In the following screen, we choose which binary log we want to examine, and the
statements are then displayed:

MySQL Server Administration with phpMyAdmin

[272]

Summary
In this chapter, we have seen various features available to system administrators
such as user account management, privileges management, database privileges
checks, server status verification, and full server exports.

Troubleshooting and Support
This chapter proposes guidelines for solving some common problems and gives hints
on how to avoid them. It also explains how to interact with the development team
for support, bug reports, and contributions.

System Requirements
A section at the beginning of the Documentation.html file (which is included with
the downloaded kit) discusses system requirements for the particular phpMyAdmin
version we are using. It is crucial that these requirements be met and that the
environment be properly configured so that problems are avoided.

Some problems, such as phpMyAdmin bugs, are in fact caused by the server
environment. Sometimes, the web server is not configured to interpret .php files
correctly, or the PHP component inside the web server does not run with the mysql
extension. MySQL accounts may be badly configured. This can happen on home
servers as well as hosted servers.

When we suspect that something is wrong, we can try a simple PHP script, test.
php, which contains the following to check if the PHP component answers correctly:

<?php
echo 'hello';
?>

We should see the hello message. If this works, we can try another script:

<?php
phpinfo();
?>

This script displays information about the PHP component, including the available
extensions. We should at least see a section about MySQL (proving that the mysql
extension is available), which gives information about the MySQL Client API version.

Troubleshooting and Support

[274]

We can also try other PHP scripts that make a connection to MySQL, to see if the
problem is more general than just phpMyAdmin not working. As a general rule, we
should be running the latest stable versions of every component.

Base Configuration
We should always double-check the way we made the installation, including proper
permissions and ownerships. Typos may occur when modifying config.inc.php.

Solving Common Errors
To help solve a problem, we should first pinpoint the origin of the error message.
Here are the various components that can generate an error message:

MySQL server: These messages are relayed by phpMyAdmin, which displays
MySQL said followed by the message.
PHP component of the web server: (for example, Parser error)
Web server: (The error can be seen from the browser, or in the web server's
log files.)
Web browser: (for example, JavaScript errors)

The Error Messages and Other Problems sections are mostly based on various
messages found on phpMyAdmin's help forum and and in the FAQ section of
Documentation.html.

Error Messages
This section refers to explicit error messages, as displayed by phpMyAdmin.

Cannot Load MySQL Extension
To connect to a MySQL server, PHP needs the MySQL extension, which is a set of
MySQL functions. This extension may compiled-in as part of the PHP server, or it
may need to be loaded dynamically, in which case phpMyAdmin may have tried to
load it and failed. This error implies that no other PHP script can make connections
to a MySQL server.

The required extension is contained in a file that can be named mysql.so on
Linux or UNIX, or mysql.dll on Windows. If our PHP server comes from a
software package, we can find and install another software package probably
called php-mysql. (The name is distribution dependent.) Otherwise, we can compile

•

•

•

•

Chapter 19

[275]

our own PHP server with the appropriate extension, as explained in the PHP
documentation. At least one well-known Linux distribution (RedHat 8.0) fails to offer
this extension as part of the web server/PHP server installation dialog, although the
package is present on installation disk 3.

The mysqli extension is designed to work with MySQL 4.1.3 and later versions, and
can be distributed in the form of a package named php-mysqli.

MySQL Said: Can't Connect to Local MySQL Server
This message indicates that the MySQL server is not running or cannot be reached
from the web server. It can also be a socket (Linux/UNIX) or a named pipe
(Windows) configuration problem.

Socket Problem (Linux/UNIX)
The socket configured in php.ini (an example of which is given below) does not
correspond to the socket of the running MySQL server:

mysql.default_socket = /tmp/mysql.sock

As a result, PHP cannot reach MySQL. We can change it to:

mysql.default_socket = /var/lib/mysql/mysql.sock

However, to be sure, we must find the exact location of this socket.

Named Pipe Problem (Windows)
This is a problem similar to the above, but on Windows. It can be solved by adjusting
mysql.default_socket with the correct named pipe used to connect locally to a
MySQL server. For example:

mysql.default_socket = MySQL

Error # 2003: The Server is not Responding
If the MySQL server is not on the same machine as the web server and is not
answering, phpMyAdmin (starting with version 2.6.0) detects the fact and reports
it accordingly.

MySQL Said: Access Denied
This error can be solved when we understand the relevant login parameters.

Troubleshooting and Support

[276]

When Using http Authentication
We cannot use the web server security mechanism based on a .htaccess file and the
http authentication in config.inc.php together. A workaround is to use cookie as
the authentication type instead of http.

When Using http, cookie, or config Authentication
The host parameter in config.inc.php must match the host defined in the user
access privileges. Sometimes, a system administrator may create an account
authorizing user bill and host localhost. If we try to use 127.0.0.1 host in
config.inc.php, it will be rejected by MySQL even though it points to the same
machine. The same problem can occur if we try the real name of the machine
(mysql.domain.com) and the definition has been made for localhost.

Access Denied ... "using password: NO"
If the message ends with using password: NO, it means that we are not transmitting
a password, and MySQL is rejecting this login attempt. The password value may not
have been set in config.inc.php.

Access Denied ... "using password: YES"
A password is transmitted, but the host/username/password combination has been
rejected by MySQL.

Warning: Cannot Add Header Information
This problem is caused by some characters (such as blank lines or spaces) being
present in config.inc.php either before the <?php tag at the beginning, or after the
?> tag at the end. We should remove these with an editor that supports .php files
(as discussed in Chapter 2).

MySQL Said: Error 127, Table Must Be Repaired
In the left panel, we click on the database name. In the right panel, we select the name
of the table for which there is an error (using the relevant checkbox). We then choose
Repair from the lower drop-down list. More details are available in Chapter 10.

BLOB Column Used in Key Specification without a
Key Length
MySQL requires that an index set on a BLOB column be limited in size. The simple
index creation technique available when creating a column does not permit the size

Chapter 19

[277]

to be specified, so we need to create the column without an index. We then come
back to the Structure page, and use the Create an index dialog to choose the BLOB
column and set a size for the index.

IIS: No Input File Specified
This is a permission problem. Internet Information Server (IIS) must be able to read
our scripts. As the server is running under the user IUSR_machinename, we have to
do the following:

Right-click on the folder where we installed phpMyAdmin
Choose Properties
Click on Add under the Security tab, and select the IUSR_machinename user
from the list
Ensure that this user has read permission to the directory

A "404: page not found" Error when Modifying a
Row
This happens when the $cfg['PmaAbsoluteUri'] parameter in config.inc.php is
not set properly. Chapter 2 explains how to take care of this parameter.

Other Problems
Here we cover solutions to problems that do not show up on screen as a specific
error message.

Blank Page or Weird Characters
By default, phpMyAdmin uses output buffering and compression techniques to
speed up the transmission of results to the browser. These techniques can interfere
with other components of the web server, causing display troubles. We can set
$cfg['OBGzip'] to FALSE in config.inc.php. This should solve the problem.

Not Being Able to Create a Database
No privileges appears next to the Create database dialog on the Home page if
phpMyAdmin detects that the account used to log in does not have the permissions
to create a database. This situation occurs frequently on hosted servers where the
system administrator prefers to create one database for each customer.

•

•

•

•

Troubleshooting and Support

[278]

If we are not on a hosted server, this message simply reflects the fact that we do
not have the global CREATE privilege nor any CREATE privilege on a wildcard
database specification.

Problems Importing Large Files or Uploading Large
BLOB Files
Usually, these problems indicate that we have hit a limit during the transfer.
Chapter 8 explains these limits and the recommended course of action. As a last
resort solution, we might have to split our large text files. (Search the Internet for
file splitters.)

MySQL Root Password Lost
The MySQL manual explains the general solution at
http://www.mysql.com/doc/en/Resetting_permissions.html.

The solution involves stopping the MySQL server, restarting it with the special
option, skip–grant–tables (which basically starts the server without security). The
way to stop and restart the server depends on the server platform used. Then we
can connect to the server from phpMyAdmin as a superuser (like root) and any
password. The next step is to change root's password. (See Chapter 17.) Then we can
stop the MySQL server and restart it using normal procedures. (Security will become
active again.)

Duplicate Field Names when Creating a Table
Here is a curious symptom: when we try to create a table containing, for example,
one field named FIELD1 of type VARCHAR(15), it looks like phpMyAdmin has sent
a command to create two identical fields named FIELD1. The problem is not caused
by phpMyAdmin but by the environment. In this case, the Apache web server seems
well configured to run PHP scripts when in fact it is not. However, this bug only
appears for some scripts.

The problem occurs when two different (and conflicting) sets of directives are used
in the Apache configuration file:

SetOutputFilter PHP
SetInputFilter PHP

and:

AddType application/x-httpd-php .php

Chapter 19

[279]

These sets of directives may be in two different Apache configuration files, so they
are difficult to notice. The recommended way is to use AddType, so we just
have to put comments on the other lines, as shown in the following snippet, and
restart Apache:

#SetOutputFilter PHP
#SetInputFilter PHP

Authentication Window Displayed more than Once
This problem occurs when we try to start phpMyAdmin with a URL other than the
one set in $cfg['PmaAbsoluteUri']. For example, a server may have more than one
name, or we may be trying to use the IP address instead of the name.

Column Size Changed by phpMyAdmin
MySQL itself sometimes decides to change the column type and size, for a more
efficient column definition. This happens mostly with CHAR and VARCHAR.

Seeing many Databases that Are Not Ours
This problem occurs mostly after an upgrade to MySQL 4. The automatic server
upgrade procedure gives the global privileges CREATE TEMPORARY TABLES,
SHOW DATABASES, and LOCK TABLES to all users. These privileges also enable
users to see the names of all the databases (but not their tables) until we upgrade
the grant tables as described in the MySQL manual. If the users do not need these
privileges, we can revoke them, and they will only see the databases to which they
are entitled.

Not Being Able to Store a Value Greater than 127
This is normal if we have defined a column of type TINYINT, since 127 is the
maximum value for this column type. Similar problems may arise with other numeric
column types. Changing the type to INT expands the available range of values.

Seeking Support
The starting point for support is the home page http://www.phpmyadmin.net,
which has sections about documentation and support (feedback). There you will find
links to the discussion forums and to various trackers such as:

Bugs tracker
Feature requests tracker

•

•

Troubleshooting and Support

[280]

Translations tracker
Patches tracker
Support tracker

FAQs
The Documentation.html file, which is part of the product, contains a lengthy FAQ
section with numbered questions and answers. It is recommended to peruse this
FAQ section as the first source for help.

Help Forums
The development team recommends that you first use the product's forums to search
for the problem encountered, and then start a new forum discussion before opening
a bug report.

Creating a SourceForge Account
Creating a (free) SourceForge user account and using it for posting on forums is
highly recommended. This enables better tracking of questions and answers.

Choosing the Thread Title
It is important to choose the summary title carefully when you start a new forum
thread. Titles like "Help me!", "Help a newbie!", "Problem", or "phpMyAdmin error!"
are difficult to deal with because answers are threaded to this title and further
reference becomes problematic. Better titles would be "Import with UploadDir",
"User can't but root can login" or "Server not responding".

Reading the Answers
As people will read and almost always answer your question, giving feedback in the
forum about the answers can really help the person who answered, and others who
have the same problem.

Support Tracker
This is another place to ask for support. Also, if we have submitted a bug report,
which is in fact a support request, the report will be moved to the support tracker.
With your SourceForge user account, you will be notified of this tracker change.

•

•

•

Chapter 19

[281]

Bug Tracker
In this tracker, we see bugs that have not yet been fixed, plus bugs that have been
fixed for the next version. (This is to avoid getting duplicate bug reports.)

Environment Description
Since developers will be trying to reproduce the problem mentioned, it helps to
describe your environment. This description can be short but should contain the
following items:

phpMyAdmin version (the team, however, expects that it is the current
stable version)
Web server name and version
PHP version
MySQL version
Browser name and version

Usually, specifying the operating system on which the server or the client are
running is not necessary unless we notice that the bug pertains to only one OS. For
example, FAQ 5.1 describes a problem where the user could not create a table having
more than 14 fields. This happens only under Windows 98.

Bug Description
We should give a precise description of what happens (including any error message,
the expected results, and the effective results we get). Reports are easily managed
if they describe only one problem per bug report (unless the problems are
clearly linked).

Sometimes, it might help to attach a short export file to the bug report to help
developers reproduce the problem. Screenshots are welcome.

Contributing to the Project
Since 1998, hundreds of people have contributed translations, code for new features,
suggestions, and bug fixes.

The Code Base
The development team maintains an evolving code base from which they periodically
issue releases. A paragraph in the home page downloads section describes how to use

•

•

•

•

•

Troubleshooting and Support

[282]

CVS to get the latest version in development. (This can be also done by downloading
the CVS snapshot.) A contribution (translation update, patch, new feature) will be
considered with a higher priority if it refers to the latest code base, and not to an
ancient phpMyAdmin version.

Translation Updates
Taking a look at the project's current list of 50 languages, we notice that they are
not equally well maintained. We can try to join the official translator for a particular
language to propose corrections to or translations of recently added messages. If this
person does not answer, we can send our modifications to the translation tracker,
inside a compressed (.zip) file.

Patches
The development team can manage patches more easily if they are submitted in the
form of a context diff against the current code base, with an explanation of the
problem solved or the new feature achieved. Contributors are officially credited in
Documentation.html.

Future phpMyAdmin Versions
Here are the features that the development team is considering for possible
implementation:

Improved support of MySQL's new features
db-based configuration with user preferences
Internal code improvements
Expanding the product to support other database systems

Summary
In this chapter, we saw how to prevent problems with a properly configured server,
and where to ask for help. We also explained some common errors and suggested
solutions. Moreover, the Contributing to the Project section explained how to help in
order to improve phpMyAdmin.

•

•

•

•

Index
A
authentication, phpMyAdmin

about 30
authentication types 30
control user 31
cookie authentication 32, 33
HTTP authentication 31
password storage, cookie authentication 33

B
BLOB fields

about 92
binary contents upload 93

bookmarks
creating 209-211
default initial query 215
executing 213
features 209
from pma_bookmark, executing 218
manipulating 214
multi-query bookmarks 213
parameterized bookmarks, creating 216
parameters 216
parameter value, passing to bookmark 217
public bookmarks 214, 215
retrieving 213
storing 211, 212

browsable foreign-table window 176
browse mode

about 69
color-marking rows 75
column length, limiting 75, 76
customizing 77
data, sorting 74

distinct values, browsing 76
navigation bar 71-73
query results, sorting 74
row backgroung color, changing 75
SQL query links 70

bug tracker, phpMyAdmin
about 281
bug description 281
environment description 281

C
cell 231
character set

about 243
choosing, MySQL version prior to 4.1.x 246
effective character set, MySQL version 4.1.x

251
importing and exporting 247
MySQL version, prior to 4.1.x 245, 246
switching, MySQL version prior to 4.1.x

246
collation

about 243
MySQL version 4.1.x 249

column-commenting
about 178, 179
automatic migration 180

column criteria, multi-table query generator
columns in result, displaying 200
criteria columns, adjusting 206
criteria rows, adjusting 204, 205
criteria rows, removing 205
field selector 199
LIKE criteria 201-204
query, updating 200, 201

[284]

sorting 200
config.inc.php file

about 24, 25
creating, manually 24
editing on Windows client 24
multi-server configuration 29

configuration parameters
$cfg[‘AllowAnywhereRecoding’] 115, 244
$cfg[‘AllowArbitraryServer’] 29
$cfg[‘AllowUserDropDatabase’] 88
$cfg[‘AvailableCharsets’] 245
$cfg[‘BgcolorOne’] 77
$cfg[‘BgcolorTwo’] 77
$cfg[‘blowfish_secret’] 33
$cfg[‘BrowseMarkerColor’] 75
$cfg[‘BrowseMarkerEnable’] 75
$cfg[‘BrowseMIME’] 231
$cfg[‘BrowsePointerColor’] 75
$cfg[‘BZipDump’] 115
$cfg[‘CharEditing’] 68
$cfg[‘CharTextareaRows’] 68
$cfg[‘CompressOnFly’] 115
$cfg[‘Confirm’] 85
$cfg[‘CtrlArrowsMoving’] 80
$cfg[‘DefaultCharset’] 245
$cfg[‘DefaultConnectionCollation’] 251
$cfg[‘DefaultDisplay’] 71
$cfg[‘DefaultLang’] 42
$cfg[‘DefaultPropDisplay’] 90
$cfg[‘DefaultQueryDatabase’] 181
$cfg[‘DefaultQueryTable’] 182
$cfg[‘DefaultTabDatabase’] 53
$cfg[‘DefaultTabServer’] 56
$cfg[‘DefaultTabTable’] 55, 141
$cfg[‘EditInWindow’] 186
$cfg[‘ErrorIconic’] 41
$cfg[‘ExecTimeLimit’] 132
$cfg[‘Export’] 106
$cfg[‘Export’][‘file_template_database’] 114
$cfg[‘Export’][‘file_template_server’] 114
$cfg[‘Export’][‘file_template_table’] 114
$cfg[‘Export’][‘format’] 106
$cfg[‘FilterLanguages’] 43
$cfg[‘ForeignKeyDropdownOrder’] 176
$cfg[‘ForeignKeyMaxLimit’] 175, 176
$cfg[‘GD2Available’] 234
$cfg[‘GZipDump’] 115

$cfg[‘HeaderFlipType’] 71
$cfg[‘IgnoreMultiSubmitErrors’] 187
$cfg[‘Import’] 131
$cfg[‘InsertRows’] 67
$cfg[‘Lang’] 43
$cfg[‘LeftBgColor’] 45
$cfg[‘LeftDisplayLogo’] 44
$cfg[‘LeftDisplayServers’] 51
$cfg[‘LeftFrameDBTree’] 48
$cfg[‘LeftFrameLight’] 46
$cfg[‘LeftFrameTableLevel’] 50
$cfg[‘LeftFrameTableSeparator’] 50
$cfg[‘LeftPointerColor’] 45
$cfg[‘LeftPointerEnable’] 45
$cfg[‘LeftWidth’] 45
$cfg[‘LightTabs’] 56
$cfg[‘LimitChars’] 75, 239
$cfg[‘LoginCookieRecall’] 33
$cfg[‘LongtextDoubleTextarea’] 92
$cfg[‘MainPageIconic’] 45, 56
$cfg[‘MaxRows’] 73
$cfg[‘MemoryLimit’] 130, 133
$cfg[‘ModifyDeleteAtLeft’] 79
$cfg[‘ModifyDeleteAtRight’] 79
$cfg[‘MySQLManualBase’] 58
$cfg[‘MySQLManualType’] 58
$cfg[‘NaturalOrder’] 42
$cfg[‘NavigationBarIconic’] 72
$cfg[‘OBGzip’] 277
$cfg[‘Order’] 75
$cfg[‘PDFDefaultPageSize’] 228
$cfg[‘PDFPageSizes’] 228
$cfg[‘PersistentConnections’] 26
$cfg[‘PmaAbsoluteUri’] 25, 277
$cfg[‘PmaNoRelation_DisableWarning’]

163
$cfg[‘PropertiesIconic’] 79, 91
$cfg[‘ProtectBinary’] 94
$cfg[‘QueryFrame’] 56
$cfg[‘QueryFrameJS’] 184
$cfg[‘QueryHistoryDB’] 185
$cfg[‘QueryHistoryMax’] 186
$cfg[‘QueryWindowDefTab’] 184
$cfg[‘QueryWindowHeight’] 57
$cfg[‘QueryWindowWidth’] 57
$cfg[‘RecodingEngine’] 245
$cfg[‘RepeatCells’] 77

[285]

$cfg[‘ReplaceHelpImg’] 58
$cfg[‘RestrictFunctions’] 81
$cfg[‘RightBgColor’] 51
$cfg[‘RightBgImage’] 52
$cfg[‘SaveDir’] 129
$cfg[‘ServerDefault’] 29
$cfg[‘Servers’][$i] 29
$cfg[‘Servers’][$i][‘AllowDeny’][‘order’] 36
$cfg[‘Servers’][$i][‘AllowDeny’][‘rules’] 35
$cfg[‘Servers’][$i][‘AllowRoot’] 36
$cfg[‘Servers’][$i][‘auth_type’] 31
$cfg[‘Servers’][$i][‘bookmarktable’]

165, 210
$cfg[‘Servers’][$i][‘column_info’] 165
$cfg[‘Servers’][$i][‘connect_type’] 27
$cfg[‘Servers’][$i][‘controlpass’] 166
$cfg[‘Servers’][$i][‘controluser’] 31, 166
$cfg[‘Servers’][$i][‘extension’] 26
$cfg[‘Servers’][$i][‘hide_db’] 37
$cfg[‘Servers’][$i][‘history’] 165, 186
$cfg[‘Servers’][$i][‘host’] 26
$cfg[‘Servers’][$i][‘only_db’] 37
$cfg[‘Servers’][$i][‘password’] 28
$cfg[‘Servers’][$i][‘pdf_pages’] 165
$cfg[‘Servers’][$i][‘pmadb’] 165
$cfg[‘Servers’][$i][‘port’] 26
$cfg[‘Servers’][$i][‘relation’] 165
$cfg[‘Servers’][$i][‘socket’] 26, 27
$cfg[‘Servers’][$i][‘table_coords’] 165
$cfg[‘Servers’][$i][‘table_info’] 165
$cfg[‘Servers’][$i][‘user’] 28
$cfg[‘Servers’][$i][‘verbose’] 26
$cfg[‘Servers’][$i][‘verbose_check’] 166
$cfg[‘ShowAll’] 73
$cfg[‘ShowBlob’] 93, 218
$cfg[‘ShowBrowseComments’] 179
$cfg[‘ShowChgPassword’] 52
$cfg[‘ShowFunctionFields’] 82
$cfg[‘ShowPhpInfo’] 53
$cfg[‘ShowPropertyComments’] 179
$cfg[‘ShowSQL’] 61
$cfg[‘ShowStats’] 53
$cfg[‘ShowTooltip’] 154
$cfg[‘ShowTooltipAliasDB’] 154
$cfg[‘SQLQuery’][‘Edit’] 70
$cfg[‘SQLQuery’][‘Explain’] 70
$cfg[‘SQLQuery’][‘Refresh’] 71

$cfg[‘SQLQuery’][‘ShowAsPHP’] 70
$cfg[‘SQLQuery’][‘Validate’] 192
$cfg[‘SQLValidator’][‘password’] 193
$cfg[‘SQLValidator’][‘username’] 193
$cfg[‘SQP’][‘fmtColor’] 188
$cfg[‘SQP’][‘fmtType’] 188
$cfg[‘SuggestDBName’] 60
$cfg[‘TextareaAutoSelect’] 183
$cfg[‘TextareaCols’] 92
$cfg[‘TextareaRows’] 92
$cfg[‘ThemeDefault’] 44
$cfg[‘ThemeManager’] 44
$cfg[‘ThemePath’] 43
$cfg[‘UploadDir’] 139
$cfg[‘UseDbSearch’] 149
$cfg[‘VerboseMultiSubmit’] 187
$cfg[‘WYSIWYG-PDF’] 226
$cfg[‘ZipDump’] 114
$cfg[Border] 77
$cfg[MaxExactCount] 54
$cfg[PmaAbsoluteUri] 279
$cfg[RestrictColumnTypes] 81
$cfg[ShowFunctionFields] 81
$cfg[ShowTooltipAliasTB] 154
$cfg[ThBgcolor] 77
$cfg[ThemePerServer] 44
$cfg[‘ShowHttpHostTitle’] 41

contributing to phpMyAdmin project
code base 281
future versions 282
patches 282
translation updates 282

control user 31
CSV

files, importing 135-137
format for database export 116
import using LOAD DATA 137
import using LOAD DATA, requirements

138
import using LOAD DATA interface 138,

139
LOAD DATA INFILE statement 137
LOAD DATA LOCAL INFILE statement

137
option for database export 116, 117
upload directory 139, 140

[286]

CSV format, database export
about 116
CSV options 116, 117
for MS Excel 117

CSV for MS Excel 117

D
data

deleting 85
functions, applying to data 81
importing 131
importing, CSV files 135-137
importing, file size limits 132
importing, memory limits 132
importing, other limits 132
importing, SQL files 133-135
importing, time limits 132
importing, transfer limits 131, 132
partial importing 133
searching 141

database
additional table, creating 77, 78
copy operation 159
creating 59
Data dictionary 222, 223
deleting 88
export 106
multi-table query generator 197
mutiple table operations 157
Print view 219
renaming operation 159
searching 148, 149
table, creating 61
table attributes 152
table maintenance 152

database, creating
about 59
authorized database creation 60
CREATE privilege 60
home page, MySQL 60
no privileges 59

database export
about 106
CSV format 116
CSV for MS Excel 117
formats 107

LaTeX format 120
Microsoft Word 200 format 119
multi-database export 127
Native MS Excel format 123, 124
PDF format 117, 118
SQL format 107
sub-panel, export 107
XML format 122

database information, MySQL server
about 264, 265
enable statistics 265
privileges, checking 265

database operations
database copy 159
database renaming 159

data deleting
about 85
multi-rows, deleting 86
rows, deleting 86
rows of mutiple tables, deleting 87
single rows, deleting 85

data editing
edit icon 79
edit mode 79, 80
function names display, restricting 81
functions, applying to data 81
handling null values, edit mode 81
multi-row editing 83
row, deleting 79
row, editing 79
rows of data, duplicating 82
sequential editing 84

data manipulation
data deleting 85
data editing 79
data navigation 80
function names display, restricting 81
functions, applying to data 81
multi-row editing 83
multi-rows, deleting 86
null values, handling 81
rows, deleting 86
rows of data, duplicating 82
rows of mutiple tables, deleting 87
sequential editing 84
single rows, deleting 85

[287]

defined relations, benefits
browsable foreign-table window 176
foreign key information 174-176
metadata, automatic update 178
referential integrity check 177

documentation, phpMyAdmin
database, Print view 219
Data dictionary 222, 223
image generation, requirements 233
PDF pages, displaying 227
PDF pages, planning 225
Print view 219
selective database, Print view 220
table, Print view 221

E
ENUM and SET FIELDS, comparing 94
ENUM field 94
error messages, phpMyAdmin

BLOB related errors 276
cannot add header information 276
cannot load MySQL extension 274
cant connect to local MySQL server 275
error 404, page not found 277
IIS, no input file specified 277
MySQL, access denied 275, 276
named pipe problem 275
password transmission problems 276
server not responding, error #2003 275
socket problem 275

export file, saving on server
about 128
on Linux system 129

F
field

adding to table 89, 90
attributes, editing 91
BLOB fields 92
DATE field 96
DATETIME field 96
ENUM field 94
SET field 94
TEXT field 91
TEXT field, layouts controlling 92

first connection, phpMyAdmin
configuring 18
configuring principles 18, 19
parameters for first MySQl server 21, 23
PmaAbsoluteUri parameter 25
server specific sections 25
testing 28
warnings, web-based setup 20, 21
web-based setup script 19-21, 23

foreign keys
drop-down list 175, 176
information 174

I
iconv module

data recoding 244
image generation, requirements

about 233
GD2 library 233
JPEG and PNG library 234
memory 234

importing data
CSV files 135-137
file size limits 132
file uploads 133
LOAD DATA INFILE statement 131
memory limits 132
other limits 132
SQL and CSV formats, comparing 135
SQL files 133-135
time limits 132
transfer limits 131, 132

index management 64
EXPLAIN statement 102
Fulltext indexes 100
index, editing 99
index problems, detecting 103
multi-field indexes 99
MyISAM tables 100
single-field indexes 98, 99
table optimization 101

InnoDB
about 162
advantages 162
foreign key feature 162
relations 170-173

[288]

status in MySQL server 267
tables 162
tables without linked tables infrastructure

173
IP-based access control

about 34
order of interpretation for rules 36
root access, rule 36
rules 35

L
LaTeX format, database export

about 120
LaTeX file 121, 122
options 121

left panel, phpMyAdmin
about 39
additional table, creating 77, 78
database, selecting 45, 46
database names, tree display 47
database view, full mode form 48
database view, light mode form 47
elements 44
full mode form 48
light mode, form 46
server-list 50
table, quick browsing 49
tables, nested display within database 49,

50
table short statistics 48
table view, full mode form 48

linked-tables
bookmarks 209
functions 166
infrastructure 162
infrastructure, installing 163, 164
infrastructure, location 162, 163
InnoDB tables without linked tables

infrastructure 173
multi-user installation 164, 165
relation view 167
single-user installation 166, 167

M
metadata 161

column-commenting 178, 179

Microsoft Word 200 format, database export
119

MIME
browser transformations 232
columns settings 232
download link 239
transformation options 233
transformation settings 231
type 232

MIME-based transformation. See MIME
multi-table query generator

about 197
automatic joins between tables 207
columns in result, displaying 200
criteria columns, adjusting 206
criteria rows, adjusting 204, 205
criteria rows, removing 205
field selector 199
LIKE criteria 201-204
query, executing 207
query, updating 200, 201
sorting 200
tables, selecting 198, 199

Multimedia Internet Mail Extension.
See MIME

multiple table operations
about 157
repairing in-use table 157

MySQL
about 8
backup 105
BLOB fields 93
browse mode 69
character set 243
collation 243
control user 31
database, creating 59
dump 105
export 105
functions, applying to data 81
index management 101
InnoDB 162
LOAD DATA INFILE statement 138
LOAD DATA LOCAL INFILE statement

138
mysqldump 105
relational data structure 161

[289]

relational MySQL 161
storage engine 162
table, creating 61
version 4.1.x 248
views 190

MySQL, version 4.1.x
about 248
character recoding 249
character sets, effective 251
collation, database view 252
collations 249, 251
database, creating 250
home page 249
Kanji support 254
server view 254

MySQL, versions prior to 4.1.x
auto recoding 245
character set, choosing 246
character set, importing and exporting 247
character set, switching 246
character sets 245, 246
data recoding 244

MySQL-Webadmin 9
mysqldump

about 105
MySQL server

arbitary server 29, 30
characteristics, displayed users list 257
copy user 262, 263
database-specific privileges 259, 262
database information 264, 265
effective privileges 256
host 258
InnoDB status 267
login information, changing 262, 263
multi-server configuration 28
new user, adding 257
operations 266
password 258
password, changing 262
privileges management 256
processes 269
query statistics page 267
server specific configuration 25
status page 266
status verification 266
storage engines 270

user 256
user, removing 263
user, resource limits 258
user management 256
username 258
user overview page 256
variables 268

N
Native MS Excel format, database export

123, 124

O
other problems, phpMyAdmin

authentication window, displayed more
than once 279

blank page 277
cant store value greater than 127 279
column size changed 279
duplicate field names 278
MySQl, root password lost 278
MySQL, unknown databases 279
problems importing large files 278
problems uploading large BLOBS 278
weird characters 277

P
panel, phpMyAdmin

Home page 40
language selector 42, 43
left panel 39
login panel 39
query window 40, 56
query window, dimensions 57
right panel 39

PDF, relational schema
about 223
table, adding 223
table, linking with other tables 224

PDF format, database export 117, 118
PDF pages

Automatic layout feature 226
displaying 227, 228
displaying, options 227, 228
editing 225, 226

[290]

new page, creating 225
planning 225

Personal Home Page. See PHP
PHP 8
PHP Hypertext Processor. See PHP
phpMyAdmin

about 8
advanced features 14
arbitary server 29, 30
awards 13
base configuration 274
bookmarks feature 161
calender popup for data entry 96
CSV files, importing 135, 136
data, importing 131
data, partial importing 133
database, creating 59
database, sorting 41
data structure, documentation 219
data transforming, MySQL version prior to

4.1.x 244
downloading 16
error messages 274
export feature 105
features 13, 14
header and footer, displaying on interface

57
history 9-12
icon, configuring 41
index management options 98
installation using Apache, IIS 18
installing 16
installing, prerequisite information 15
installing on Linux server 17, 18
installing on local Windows server 18
installing on remote server, Windows client

used 16, 17
interface 39
internal relation view 168
japanese encodings 254
japanese language, support for 254
Kanji support 254
language, selecting 42, 43
linked-tables 162
login panel 39
MIME-based transformations 231

multi-server configuration 28
MySQL documentation links, displaying on

interface 58
need for 15
other problems 277
Print view 219
query window 183
relational MySQL 161
security 34
selective exports 125
server administration features 14
server management features 255
server specific configuration 25
SQL files, importing 134
SQL query box 181
starting page 40
support 279
system requirements 15, 273
table names, sorting 41
themes 43
upgrading 38
version 1.3.0 10
views 190
wildcard searching 145
Windows title configuration 41

primary key 64
Print view, phpMyAdmin

about 219
database Print view 219
selective database Print view 220
table Print view 221

Professional Home Page. See PHP

Q
queries

editing 186
multi-statement queries 186, 187
multi-table query generator 197

query window
about 56, 183, 184
editing 186
garbage collection 186
options 184
query, editing 186
synchronization 185

[291]

R
recode module

data recoding 244
relational MySQL

about 161
InnoDB storage engine 162

relation view
about 167, 168
column-commenting 178, 179
display field, about 169
foreign key system, InnoDB 170, 171
InnoDB storage engine 170-173
phpMyAdmin, internal relation view 168
relation, about 168

right panel, phpMyAdmin
about 39, 51
database view 53, 54
default server page 56
Home page 40, 52, 53
icons, for home page and menu tabs 56
server view 55
table view 54
views 40

S
Save as file sub-panel, database export

about 113
character set choice 115
compression 114, 115
File name template 114

searching data
single-table search 141

security, phpMyAdmin installing
database list, restricting 37
directory-level protection 34
in-transit data, protecting 37
IP-based access control 34
rules, IP-based access control 35
various levels 34

selective exports
about 125
exporting and checkboxes 127
partial query results, exporting 125

server specific configuration, phpMyAdmin
about 25
compress configuration 27

config authentication type 27, 28
extension 26
MySQL, extension 26
persistent connections 26

SET field 94
single-table search

about 141
display fields, selecting 142, 143
distinct results, obtaining 147
logical operators used 147
multiple criteria for same query 146
phpMyAdmin used 141
print view 144
query by example, searching 143, 144
search sub-page, entering 141
where clause used 147
wildcard searching 144

SQL
files, importing 133-135
history, database-based 185
history, JavaScript-based 185
LIKE operator 145
query box 181
query window 183
upload directory 139, 140
validator 192
views 190

SQL and CSV formats, comparing 135
SQL format, database export

about 107, 109
data, SQL options 112, 113
SQL options 109
structure, SQL options 110, 111
structure export 111

SQL query box
about 181
database view 181
field selector 183
table view 182, 183

SQL validator
about 192
configuring 192
non standard-confirming queries 194, 195
reports 193
standard-confirming queries 193, 194
system requirements 192

[292]

support, phpMyAdmin
bug tracker 281
FAQ 280
help forums 280
home page 279
reading answers 280
SourceForge account, creating 280
support tracker 280
thread title, choosing 280

T
table

additional table, creating 77, 78
appending data to table 157
attributes 152
copy operation 156
data insertion, manually 67
deleting 87
maintenance 152
move operation 156
primary key 64
renaming 156

table, creating
about 61
additional table 77, 78
field names 63
fields, choosing 62
first table 62-65
index, adding to fields 65
table names 63
VARCHAR type 63

table attributes
about 152
auto-increment, table option 156
changing 153
checksum, table option 155
delay_key_write, table option 155
other attributes 155
pack_keys, table option 155
settings 153
Table comments attribute 153, 154
table options 155
Table order attribute 154, 155
Table storage engine 153
Table type attribute 153

table export
split-file export 125

table maintenance
about 152
analyze table 152
check table 152
defragment table 152
flush table 152
optimize table 152
repair table 152

table operations
appending data to table 157
copy 156
deleting table 87
move 156
mutiple table operations 157
rename 156

table structure manipulation
about 89
ENUM field, adding 95
field, adding 89, 90
field attributes, editing 91
vertical mode 90

themes, phpMyAdmin
about 43
configuring 43
selecting 44

TIMESTAMP field
options 97

transformation
about 231
clickable thumbnail 235
date formatting 236
download link 239
examples 235
external applications 240, 241
hexadecimal representation 240
in cell sorting, external applications

241, 242
links from text 237
link to an image 236
original formatting, preserving 238
parts of a text, displaying 239
text/plain imagelink 238

[293]

U
Unicode

about 243
transformation formats 243
UTF-8 243

uploading data. See importing data
user, MySQL server

copy user 262, 263
database-specific privileges 259, 262
host 258
login information, changing 262, 263
new user, adding 257
password 258
removing 263
resource limits 258
username 258

UTF-8 243, 244

V
views

about 190
creating 190, 191
operations on views 191, 192

W
Web 7
Web applications 7
Web server

upload directory 139, 140

X
XML format, database export 122, 123

	Mastering phpMyAdmin 2.8 for Effective MySQL Management
	Table of Contents
	Preface
	Chapter 1: Introducing phpMyAdmin
	PHP and MySQL: The Leading Open-Source Duo
	What is phpMyAdmin?
	History
	Awards
	phpMyAdmin Features Summary
	Summary

	Chapter 2: Installing phpMyAdmin
	System Requirements
	Downloading the Files
	Installation
	Installation on a Remote Server Using a Windows Client
	Installation on a Local Linux Server
	Installation on Local Windows Servers (Apache, IIS)

	First Connection Configuration
	Configuration Principles
	Web-Based Setup Script
	Manual Creation of config.inc.php
	Tips for Editing config.inc.php on a Windows Client
	The config.inc.php File
	PmaAbsoluteUri
	Server-Specific Sections
	extension
	PersistentConnections
	connect_type, socket and port
	compress Configuration
	Authentication Type: config

	Testing the First Connection

	Multi-Server Configuration
	Servers Defined in the Configuration File
	Arbitrary Server

	Advanced Authentication
	Authentication Types Offered
	The Control User
	HTTP Authentication
	Cookie Authentication

	Security
	Directory-Level Protection
	IP-Based Access Control
	Rules
	Order of Interpretation for Rules
	Simplified Rule for Root Access

	Restricting the List of Databases
	Protecting In-Transit Data

	Upgrading phpMyAdmin
	Summary

	Chapter 3: Interface Overview
	Panels and Windows
	Login Panels
	Left and Right Panels
	Home Page
	Views

	Query Window
	Starting Page
	Window Titles Configuration
	General Icon Configuration
	Natural Sort Order for Database and Table Names

	Language Selection
	Themes
	Theme Configuration
	Theme Selection

	Left Panel
	Database and Table List
	Light Mode
	Full Mode
	Table Short Statistics
	Quick-Browsing a Table
	Nested Display of Tables within a Database

	Server-List Choice

	Right Panel
	Home Page
	Database View
	Table View
	Server View
	Icons for Home Page and Menu Tabs

	Query Window
	Site-Specific Header and Footer
	MySQL Documentation Links
	Summary

	Chapter 4: First Steps
	Database Creation
	No Privileges?
	First Database Creation Is Authorized

	Creating Our First Table
	Choosing the Fields
	Table Creation
	Choosing Keys

	Manual Data Insertion
	Data Entry Panel Tuning for Char and Varchar

	Browse Mode
	SQL Query Links
	Navigation Bar
	Sorting Results
	Color-Marking Rows
	Limiting the Length of Each Column
	Browsing Distinct Values
	Browse-Mode Customization

	Creating an Additional Table
	Summary

	Chapter 5: Changing Data
	Edit Mode
	Moving to Next Field with the Tab Key
	Moving with Arrows
	Handling NULL Values
	Applying a Function to a Value
	Duplicating Rows of Data

	Multi-Row Editing
	Editing the Next Row
	Deleting Data
	Deleting a Single Row
	Deleting Many Rows
	Deleting All the Rows in a Table
	Deleting All Rows in Many Tables

	Deleting Tables
	Deleting Databases
	Summary

	Chapter 6: Changing Table Structures
	Adding a Field
	Vertical Mode

	Editing Field Attributes
	TEXT
	BLOB (Binary Large Object) Fields
	Binary Contents Uploads

	ENUM and SET
	DATE, DATETIME, and TIMESTAMP
	Calendar Popup
	TIMESTAMP Options

	Index Management
	Single-Field Indexes
	Multi-Field Indexes and Index Editing
	FULLTEXT Indexes
	Table Optimization: Explaining a Query
	Detection of Index Problems

	Summary

	Chapter 7: Exporting Structure and Data
	Dumps, Backups, and Exports
	Database Exports
	The Export Sub-Panel
	SQL
	SQL Options

	The Save as file Sub-Panel
	File Name Template
	Compression
	Choice of Character Set

	CSV
	CSV for MS Excel
	PDF
	Microsoft Excel 2000
	Microsoft Word 2000
	LaTeX
	XML
	Native MS Excel (pre-Excel 2000)

	Table Exports
	Split-File Exports

	Selective Exports
	Exporting Partial Query Results
	Exporting and Checkboxes

	Multi-Database Exports
	Saving the Export File on the Server
	User-specific Save Directories

	Memory Limits
	Summary

	Chapter 8: Importing Structure and Data
	Limits for the Transfer
	Time Limits
	Other Limits
	Partial Imports

	Importing SQL Files
	Importing CSV Files
	Differences between SQL and CSV Formats
	Exporting a Test File
	CSV
	CSV Using LOAD DATA
	Requirements
	Using the LOAD DATA Interface

	Web Server Upload Directories
	Summary

	Chapter 9: Searching Data
	Single-Table Searches
	Daily Usage of phpMyAdmin
	Entering the Search Sub-Page
	Selection of Display Fields
	Search Criteria by Field: Query by Example
	Print View
	Wildcard Searching
	Combining Criteria
	Applying a WHERE Clause
	Obtaining Distinct Results

	Complete Database Search
	Summary

	Chapter 10: Table and Database Operations
	Table Maintenance
	Changing Table Attributes
	Table Type
	Table Comments
	Table Order
	Table Options

	Renaming, Moving, and Copying Tables
	Appending Data to a Table

	Multi-Table Operations
	Repairing an "in use" Table

	Database Operations
	Renaming a Database
	Copying a Database

	Summary

	Chapter 11: The Relational System
	Relational MySQL?
	InnoDB

	Linked-Tables Infrastructure
	Location of the Infrastructure
	Installing Linked-Tables Infrastructure
	Multi-User Installation
	Single-User Installation

	The Relation View
	Internal phpMyAdmin Relations
	Defining the Relation
	Defining the Display Field

	InnoDB Relations
	InnoDB Tables without Linked-Tables Infrastructure

	Benefits of the Defined Relations
	Foreign Key Information
	The Drop-Down List of Foreign Keys
	The Browseable Foreign-Table Window
	Referential Integrity Checks
	Automatic Updates of Metadata

	Column-Commenting
	Automatic Migration

	Summary

	Chapter 12: Entering SQL Commands
	The SQL Query Box
	The Database View
	The Table View
	The Fields Selector
	Clicking Into the Query Box

	The Query Window
	Query Window Options
	JavaScript-Based SQL History
	Database-Based SQL History (Permanent)
	Editing Queries in the Query Window

	Multi-Statement Queries
	Pretty Printing (Syntax-Highlighting)
	Views
	Creating a View
	Operations on Views

	The SQL Validator
	System Requirements
	Making the Validator Available
	Validator Results
	Standard-Conforming Queries
	Non Standard-Conforming Queries

	Summary

	Chapter 13: The Multi-Table Query Generator
	Choosing Tables
	Column Criteria
	Field Selector: Single-Column or All Columns
	Sorts
	Showing a Column
	Updating the Query
	Criteria
	Adjusting the Number of Criteria Rows
	Adjusting the Number of Criteria Columns

	Automatic Joins
	Executing the Query
	Summary

	Chapter 14: Bookmarks
	Creating a Bookmark after a Successful Query
	Storing a Bookmark before Sending a Query
	Multi-Query Bookmarks
	Recalling from the Bookmarks List
	Bookmark Execution
	Bookmark Manipulation

	Public Bookmarks
	The Default Initial Query for a Table
	Bookmark Parameters
	Creating a Parameterized Bookmark
	Passing a Parameter Value to a Bookmark

	Executing Bookmarks from the pma_bookmark Table
	Summary

	Chapter 15: System Documentation
	The Database Print View
	The Selective Database Print View
	The Table Print View
	The Data Dictionary
	Relational Schema in PDF
	Adding a Third Table to Our Model
	Editing PDF Pages
	Page Planning
	Creating a New Page
	Editing a Page
	Displaying a Page
	A Note about Fonts Used

	Summary

	Chapter 16: MIME-Based Transformations
	The MIME Column's Settings
	MIME Types
	Browser Transformations
	Transformation Options

	Requirements for Image Generation
	The GD2 Library
	The JPEG and PNG Libraries
	Memory Limits

	Examples of Transformations
	Clickable Thumbnail (.jpeg or .png)
	Links to an Image
	Date Formatting
	Links from Text
	text/plain: link
	text/plain: imagelink

	Preserving the Original Formatting
	Displaying Parts of a Text
	Download Link
	Hexadecimal Representation
	SQL Pretty Printing
	External Applications
	External Application Example: In-Cell Sort

	Summary

	Chapter 17: Character Sets and Collations
	Language Files and UTF-8
	Versions of MySQL Prior to 4.1.x
	Data Recoding
	Character Sets
	Choosing the Effective Character Set
	The Impact of Switching
	Importing and Exporting with Character Sets

	MySQL 4.1.x and Later
	Collations
	The Home Page
	Creating a Database
	Available Character Sets and Collations
	Effective Character Sets and Collations

	The Database View
	The Table View
	Importing and Exporting with Character Sets
	Server View

	Kanji Support
	Summary

	Chapter 18: MySQL Server Administration with phpMyAdmin
	Entering the Server View
	User and Privileges Management
	The User Overview
	Adding a User
	User Name
	Host
	Password
	Global Privileges
	Resource Limits

	Editing a User
	Edit Privileges
	Database-Specific Privileges
	Changing the Password
	Changing Login Information or Copying a User

	Removing a User

	Database Information
	Enabling Statistics
	Sorting Statistics
	Checking the Database Privileges Check
	Dropping Selected Databases

	Server Operations
	Server Status Verification
	The General Status Page
	InnoDB Status

	Server Variables
	Server Processes
	Storage Engines
	The Binary Log

	Summary

	Chapter 19: Troubleshooting and Support
	System Requirements
	Base Configuration
	Solving Common Errors
	Error Messages
	Cannot Load MySQL Extension
	MySQL Said: Can't Connect to Local MySQL Server
	Socket Problem (Linux/UNIX)
	Named Pipe Problem (Windows)
	Error # 2003: The Server is not Responding
	MySQL Said: Access Denied
	When Using http Authentication
	When Using http, cookie, or config Authentication
	Access Denied ... "using password: NO"
	Access Denied ... "using password: YES"
	Warning: Cannot Add Header Information
	MySQL Said: Error 127, Table Must Be Repaired
	BLOB Column Used in Key Specification without a Key Length
	IIS: No Input File Specified
	A "404: page not found" Error when Modifying a Row

	Other Problems
	Blank Page or Weird Characters
	Not Being Able to Create a Database
	Problems Importing Large Files or Uploading Large BLOB Files
	MySQL Root Password Lost
	Duplicate Field Names when Creating a Table
	Authentication Window Displayed more than Once
	Column Size Changed by phpMyAdmin
	Seeing many Databases that Are Not Ours
	Not Being Able to Store a Value Greater than 127

	Seeking Support
	FAQs
	Help Forums
	Creating a SourceForge Account
	Choosing the Thread Title
	Reading the Answers

	Support Tracker
	Bug Tracker
	Environment Description
	Bug Description

	Contributing to the Project
	The Code Base
	Translation Updates
	Patches

	Future phpMyAdmin Versions
	Summary

	Index

